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Abstract 

We describe a model of visual word recognition that accounts for 
several aspects of the temporal processing of sequences of briefly 
presented words. The model utilizes a new representation for writ­
ten words, based on dynamic time warping and multidimensional 
scaling. The visual input passes through cascaded perceptual, com­
parison, and detection stages. We describe how these dynamical 
processes can account for several aspects of word recognition, in­
cluding repetition priming and repetition blindness. 

1 INTRODUCTION 

Several psychological phenomena show that the construction of organized and mean­
ingful representations of the visual environment requires establishing separate repre­
sentations (termed episodic representations) for the different objects viewed. Three 
phenomena in the word recognition literature suggest that the segregation of the 
visual flow into separate episodic representations can be characterized in terms of 
specific temporal constraints. We developed a model to explore the nature of these 
constraints. 

2 DESCRIPTION OF THE BEHAVIORAL DATA 

In a typical priming experiment, subjects are presented with a first word, termed 
the "prime," and then asked to name or make a judgment to a second word, termed 
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the "target." The performance of subjects is compared in conditions in which the 
target and prime are related versus conditions in which they are unrelated. 

When the prime is presented fast enough so that it cannot be identified (about 
40 ms), subjects' performance on the target is facilitated when the prime and the 
target are identical compared to the case in which they are unrelated. This effect, 
known as "lnasked priming," is very short lasting, appearing only within trials, 
and lasting on the order of 100 ms (Humphreys, Evett, Quinlan & Besner, 1987). 

If the prime, however, is presented for a period such that it is just identifiable (about 
100 ms), subjects' performance on the target is hindered when prime and target 
are identical (Kanwisher, 1987; Humphreys et al., 1987). This effect, known as 
"repetition blindness," is conditional on the conscious identification of the prime. 
The size of the effect decreases as the duration between the two items increases. 
Repetition blindness is observed only within trials and vanishes for inter-stimulus 
durations on the order of 500 ms. 

When the prime is presented long enough to be easily identifiable (about 250 ms or 
more), subjects' performance on the target is once again facilitated when prime and 
target are identical (Salasoo, Shiffrin & Feustel, 1985). This effect, known as "clas­
sical repetition priming," is long lasting, being observed not only within trials, 
but between trials and even between sessions. In certain experimental conditions, 
it has been observed to last up to a year. 

These results implicate two factors influencing word recognition: the time of pre­
sentation and whether or not the prime has been identified. We have developed a 
model that captures the rather non-intuitive result that as the time of presentation 
of the prime increases, recall of the target is first facilitated, then inhibited and then 
facilitated again. The two main features of the model are the dynamical properties 
of the word representations and the dependence of the detection processes for each 
word on previous conscious identification of that word. 

3 REPRESENTATION 

The representation that we developed for our model is a vector space representation 
that allows each word to be represented by a fixed-length vector, even though the 
words are of different length. We developed an algorithmic method for finding the 
word representations that avoids some of the difficulties with earlier proposals (cf. 
Pinker & Prince, 1988). 

The algorithm proceeds in three stages. First, dynamic programming (Bellman, 
1957) is used to compute an inter-word similarity matrix. The transition costs in 
the dynamic programming procedure were based on empirically-determined values 
of visual similarity between individual letters (Townsend, 1971). Interestingly, we 
found that dynamic programming solutions naturally capture several factors that 
are known to be important in human sensitivity to orthographic similarity (for ex­
ample, orthographic priming increases as a function of the number of letters shared 
between the prime and the target in a nonlinear manner, shared end-letters are 
more important than shared middle-letters, and relative letter position determines 
orthographic similarity (Humphreys et al., 1987)). 
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After the dynamic programming stage, multidimensional scaling (Torgerson, 19.58) 
is used to convert the inter-word similarity ma.trix into a vector space representation 
in which distance correlates with similarity. 

Next, word vectors are normalized by projecting them onto a semi-hypersphere. 
This gives the origin of the vector space a meaning, allowing us to use vector 
magnitude to represent signal energy. 

This representation also yielded natural choices for the "blank" stimulus and the 
"mask" stimulus. The "blank" was taken to be the origin of the space and the 
"mask" was taken to be a vector on the far side ofthe hypersphere. In the dynamical 
model that we describe below, vectors that are far apart have maximally disruptive 
effects on each other. A distant stimulus causes the state to move rapidly away 
from a particular word vector, thus interfering maximally with its processing. 

4 PROCESSING 

4.1 FORMALIZATION OF THE PROBLEM AS A SIGNAL 
DETECTION PROBLEM 

We formalize the problem of visual word recognition as a problem of detecting 
significant fluctuations of a multidimensional signal embedded in noise. This can 
be viewed as a maximum likelihood detection problem in which the onsets and 
durations of the signal are not known a priori . Our model has two main levels of 
processing: a perceptual stage and a detection stage. 

Perceptual Stage 

The perceptual stage is a bank of noisy linear filters. Let Wi denote the n­
dimensional word vector presented at time t, with components Wi,k. The word 
vector is corrupted with white noise crt] to form the input Uk [t]: 

udt] = VVi ,k + crt], 
and this input is filtered: 

rdt] = -aork[t - 1] - alrk[t - 2] + budt] + 7][t], 
in the presence of additional white noise 7][t]. 

Detection Stages 

The first detection stage in the model is a linear filter whose inverted impulse 
response is matched to the impulse response of the perceptual filter: 

sdt] = -cosdt - 1] - clsdt - 2] + drk[t]. 
Such a filter is known as a matched filter, and is known to have optimality properties 
that make it an effective preprocessor for a system that utilizes thresholds for making 
decisions (van Trees, 1968). The output of the matched filter is projected onto each 
of the words in the lexicon to form scalar "word activation" signals xdt] that can 
be compared to thresholds: 

n 

Xi[t] = L Wi ,ksdt]. 
k=l 
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Figure 1: The processing stages of the model. The figures on the right show the 
signals in the model projected onto the vector for the word bring. Bring was pre­
sented for 100 ms, followed by a 300 ms blank, followed by a second presentation 
of bring for 300 ms. 

The decision process is a simple binary decision based on a variable baseline pdt] 
and a variable threshold edt]: 

{ I if xdt] - pdt] > edt] 
Yi = a otherwise 

4.2 DETECTION DYNAMICS 

The problem of detecting signals that may overlap in time and have unknown onsets 
and unknown durations requires the system to focus on fluctuations rather than the 
absolute heights of the activation curves . Moreover, the test for significance of a 
fluctuation must be dependent on the state of the detection mechanism and the 
state of the filters. Our significance test utilizes two time-varying quantities to 
capture this state-dependence: the baseline p and the threshold o. 
The baseline Pi [t] varies as follows. On time steps for which the fluctuations are 
subthreshold (ydt] = 0, for all i), each baseline simply tracks the most recent 
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minimum value of the corresponding word activation signal: 

I/. • [t] _ { fl,i [t - 1] 
rt - Xi [t] 

if Xi[t] > fl,i[t] 
otherwise 

When a fluctuation passes threshold (ydt] = 1, for some i), the word i is "detected," 
and the baselines of all words are increased: 

fl,dt] = fl,dt - 1] + ~c/>(i, k), 

where c/>(i, k) is the angle between Wi and Wk and ~ is a positive scaling parameter. 
This rule prevents multiple detections during a single presentation and it prevents 
the neighbors of a detected word from being detected due to their overlap with the 
detected word. 

The threshold (}i is subject to first-order dynamics that serve to increase or de­
crease the threshold as a function of the recent activation history of the word (a 
rudimentary form of adaptation): 

Odt] = a(}dt -1] + (1- a)()~ - ,B(Xi[t] - fl,dt]) + , 
where a and ,B are positive numbers. This rule has the effect of decreasing the 
threshold if the activation of the word is currently above its baseline, and increasing 
the threshold toward its nominal value ()? otherwise. 

4.3 PARAMETERS 

The parameters in the model were determined from the behavioral data and from 
the structural assumptions of the model in the following manner. The dynamics of 
the perceptual filter were determined by the time constants of masked priming, as 
given by the behavioral data. This choice also fixed the dynamics of the matched 
filter, since the matched filter was tied to the dynamics of the perceptual filter. The 
dynamics of the baseline fl, (i.e., the value 0 were determined by the constraint that 
a long presentation of a word not lead to multiple detections of the word. Finally, the 
dynamics of the threshold 0 were determined by the dynamics of classical repetition 
priming as given by the behavioral data. Note that the behavioral data on repetition 
blindness were not used in adjusting the parameters of the model. 

5 ACCOUNTS OF THE THREE BASIC PHENOMENA 

5.1 MASKED PRIMING 

The facilitation observed in masked priming is due to temporal superposition in the 
perceptual filter and the matched filter. At the time scale at which masked priming 
is observed, the activation due to the first critical word (Cl) overlaps with the 
activation due to the second critical word (C2) (see Figure 2A), leading to a larger 
word activation value when C1 and C2 are identical than when they are different. 

5.2 REPETITION BLINDNESS 

The temporal superposition that leads to masked priming is also responsible for rep­
etition blindness (see Figure 3). The temporal overlap from the filtering dynamics 
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Figure 2: Activation curves at the perceptual level (A) and the matched filter level 
(B) for the word bring during the presentation of the sequence bring, character, 
bring. Each word was presented for 40 ms . 
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Figure 3: Activation curves for the word bring during the presentation of the se­
quence bring, character, bring. Each word was presented for 100 ms. 

will prevent the baseline I-' from getting reset to a sufficiently small value to allow 
a second detection. That is, repetition blindness arises because the fluctuation due 
to the brief presentation of C2 is not judged significant against the background of 
the recent detection of the word. Note that such a failure to detect the second oc­
currence will happen only when C 1 has been correctly detected, because only then 
will the baseline be increased. This dependence of repetition blindness on explicit 
detection of the first occurrence also characterizes the behavioral data (Kanwisher, 
1987) . 

5.3 CLASSICAL REPETITION PRIMING 

The facilitation observed in classical repetition priming is due to the dynamics of the 
threshold (). The value of () decreases during significant increases in the activation of 
a word; hence a smaller fluctuation in activation is needed for the next occurrence 
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Figure 4: Activation curves for the word bring during the presentation of the word 
bring for 300ms, followed by a 300ms blank, followed by bring again for lOOms. 

to be detected (see Figure 4). 

6 OTHER DATA ACCOUNTED FOR BY THE MODEL 

The model captures most of the specific characteristics of the three basic phenomena 
that we have reviewed. For example, it accounts for the finding of masked priming 
between orthographic neighbors (Humphreys, et al., 1987). This effect arises in the 
model because a distributed representation is used for the words. The model also 
captures the finding that the size of repetition blindness decreases as the interval 
between the critical stimuli increases (this is due to the fact that the baseline is reset 
to increasingly lower values as the inter-stimulus interval increases), as well as the 
fact that the size of repetition blindness decreases as the duration of presentation of 
C2 increases (because the activation for C2 continues to increase while the baseline 
remains fixed). Similarly, the model accounts for the finding that. the manifestation 
of repetition blindness is dependent on the conscious identification of the first oc­
currence, as well the finding of repetition blindness between orthographic neighbors 
(Kanwisher, 1987). Specifics of classical repetition priming, such as the finding that 
priming is restricted to a word identity, and the fact that its size increases with 
the number of repetitions and diminishes as the lag between repetitions increases 
(Salasoo, Shiffrin & Feustel, 1985), are also captured by the model. 

The model also accounts for other behavioral phenomena described in the literature 
on word recognition. Our vector space representation allows us t.o account naturally 
for the fact that the final words in a list are recalled better than the middle words 
in the list (the "recency" effect). This occurs because dissimilar words tend to 
have large angle between them (and therefore "inhibit" each other dynamically). 
whereas the "blank" is at the origin of the space and is relatively "close" to an of the 
words. The residual activation for a presented word therefore tends to be stronger 
if followed by a blank than by a dissimilar word. The model also captures certain of 
the effects of pattern masks on word recognition. For example, "forward" masking, 
a condition in which the mask precedes the word to be detected, is known t.o be 
less disruptive than "backward" masking, a condition in which the mask follows 
the word to be detected. This occurs in the model because of the dynamics of the 
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baselines: preceding a word with a mask tends to reset its baseline to lower values 
and therefore renders the test for significance relatively more sensitive. 

7 CONCLUSIONS 

From the point of view of the current model, the fact that the detection of repeated 
items is enhanced, then suppressed, then once again enhanced as the duration of 
the items is increased finds a natural explanation in the nature of the signal pro­
cessing task that the word recognition system must solve. The signals that arrive in 
temporal sequence for perceptual processing have unknown onset times, unknown 
durations, and are corrupted by noise. The fact that signals have unknown onset 
times and can superimpose implies that the system must detect fluctuations in sig­
nal strength rather than absolute values of signal strength. The presence of noise, 
inevitable given the neural hardware and the complex multidimensional nature of 
the signal, implies that the system must detect significant fluctuations and must in­
corporate information about recent events into its significance tests. The real-time 
constraints of this detection task and the need to guard against errors imply that 
certain of the fluctuations will be missed, a fact that will result in "blindness" to 
repeated items at certain time scales. 

Acknowledgments 

This research was funded by the McDonnell-Pew Centers for Cognitive Neuroscience 
at UCSD and MIT, by a grant from the McDonnell-Pew Foundation to Michael!. 
Jordan, and by NIDCD Grant 5R01-DC-00128 to Helen Neville. 

References 

Humphreys, G. W., Evett, L. J., Quinlan, P. T., & Besner, D. (1987). Orthographic 
priming. In M. Coltheart (Ed.), Attention and Performance XII (pp. 105-125). 
Hillsdale, NJ: Erlbaum. 

Kanwisher, N. (1987). Repetition blindness: Type recognition without token indi­
viduation. Cognition, 27, 117-143. 

Pinker, S. & Prince, A. (1988). On language and connectionism: Analysis of a 
parallel distributed processing model of language acquisition. Cognition, 28, 73-
193. 

Salasoo, A., Shiffrin, R. M., & Feustel, T. C. (1985). Building Permanent Mem­
ory Codes: Codification and Repetition Effects in Word Identification . Journal of 
Experimental Psychology: General, 114, 50-77. 

Torgerson, W. S. (1958). Theory and Methods of Scaling. J. Wiley & Sons: New 
York. 

Townsend, J. T. (1971). Theoritical analysis of an alphabetic confusion matrix. 
Perception and Psychophysics, 9, 40-50. (see also 449-454). 

Vall Trees, F. (1968). Detection, Estimation and Modulation Theory, Part 1. New 
York: Wiley. 


