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Abstract

We are interested in the use of analog neural networks for recog-
nizing visual objects. Objects are described by the set of parts
they are composed of and their structural relationship. Struc-
tural models are stored in a database and the recognition prob-
lem reduces to matching data to models in a structurally consis-
tent way. The object recognition problem is in general very diffi-
cult in that it involves coupled problems of grouping, segmentation
and matching. We limit the problem here to the simultaneous la-
belling of the parts of a single object and the determination of
analog parameters. This coupled problem reduces to a weighted
match problem in which an optimizing neural network must min-
imize E(M,p) = ) ,; MaiWai(p), where the {M,;} are binary
match variables for data parts ¢ to model parts & and {Wai(p)}
are weights dependent on parameters p. In this work we show that
by first solving for estimates p without solving for M,;, we may
obtain good initial parameter estimates that yield better solutions
for M and p.
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Figure 1: Stored Model for a 3-Level Compositional Hlerarchy (compare Figure 3).

1 Recognition via Stochastic Forward Models

The Frameville object recognition system introduced by Mjolsness et al [5, 6, 1]
makes use of a compositional hierarchy to represent stored models. The recognition
problem is formulated as the minimization of an objective function. Mjolsness [3, 4]
has proposed to derive the objective function describing the recognition problem
in a principled way from a stochastic model that describes the objects the system
is designed to recognize (stochastic visual grammar). The description mirrors the
data representation as a compositional hierarchy, at each stage the description of
the object becomes more detailed as parts are added.

The stochastic model assigns a probability distribution at each stage of that process.
Thus at each level of the hierarchy a more detailed description of parts in terms of
their subparts is given by specifying a probability distribution for the coordinates of
the subparts. Explicitly specifying these distributions allows for finer control over
individual part descriptions than the rather general parameter error terms used
before [1, 8]. The goal is to derive a joint probability distribution for an instance
of an object and its parts as it appears in the scene. This gives the probability of
observing such an object prior to the arrival of the data. Given an observed image,
the recognition problem can be stated as a Bayesian inference problem that the
neural network solves.

1.1 3-Level Stochastic Model

For example, consider the model shown in Figure 1 and 3. The object and its parts
are represented as line segments (sticks), the parameters were p = (z, y,1,6)T with
z,y denoting position, [ the length of a stick and @ its orientation. The model
considers only a rigid translation of an object in the image.

Only one model is stored. From a central position p = (z,y,1,8), itself chosen
from a uniform density, the Ny parts at the first level are placed. Their structural
relationships is stored as coordinates ug in an object-centered coordinate frame,
1.e. relative to p. While placing the parts, Gaussian distributed noise with mean 0
and is added to the position coordinates to capture the notion of natural variation
of the object’s shape. The variance is coordinate specific, but we assume the same
distribution for the z and y coordinates, o%,; o2 is the variance for the length
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component and o3, for the relative angle. In addition, here we assume for simplicity
that all parts are independently distributed. Each of the parts 3 is composed of sub-
parts. For simplicity of notation, we assume that each part 3 is composed from the
same number of subparts N,, (note that the index v in Figure 2 here corresponds
to the double index fm to keep track of which part 3 subpart #m belongs to on the
model side, i.e. the index #m denotes the m*® sub-part of part 5). The next step
models the unordering of parts in the image via a permutation matrix M, chosen
with probability P(M), by which their identity is lost. If this step were omitted,
the recognition problem would reduce to the problem of estimating part parameters
because the parts would already be labeled.

From the grammar we compute the final joint probability distribution (all constant
terms are collected in a constant C'):
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1.2 Frameville Architecture for Part Labelling within a single Object

The stochastic forward model for the part labelling problem with only a single object
present in the scene translates into a reduced Frameville architecture as depicted in
Figure 2. The compositional hierarchy parallels the steps in the stochastic model
as parts are added at each level. Match variables appear only at the lowest level,
corresponding to the permutation step of the grammar. Parts in the image must
be matched to model parts and parts found to belong to the stored object must be
grouped together.

The single match neuron M,; at the highest level can be set to unity since we assume
we know the object’s identity and only a single object is present. Similarly, all terms
ina;; from the first to the second level can be set to unity for the correct grouping
since the grouping is known at this point from the forward model description. In
addition, at the intermediate (second) level, we may set all Mg; = 1 for g = j
and Mpg; = 0 otherwise with no loss of generality. These mid-level frames may
be matched ahead of time, but their parameters must be computed from data.
Introducing a part permutation at the intermediate levels thus is redundant. Given
this, an additional simplification ina grouping variables at the lowest (third) level
is possible. Since parts are pre-matched at all but the lowest level, ina;; can be
expressed in terms of the part match My as inajr = My INA,gMp; and explicitly
representing ina;ji as variables is not necessary.

The input to the system are the {px}, recognition involves finding the parameters

403



404

Utans and Gindi

INA g "

™~
o ay

INAg, (JD ;I O 4
e g
NS

Mode! E

Data

Figure 2: Frameville Architecture for the Stochastic Model. The 3-level grammar leads to a reduced
“Frameville” style network architecture: a single model is stored on the model side and only one instance
of the model is present in the input data. The ovals on the model side represent the object, its parts
and subparts (compare Figure 1); the arcs INA represent their structural relationship. On the data side,
the triangles represent parameter vectors (or frames) describing an instance of the object in the scene.
At the lowest level the px represent the input data, parameters at higher levels in the hierarchy must be
computed by the network (represented as bold triangles). ina represents the grouping of parts on the
data side (see text). The horizontal lines represent assignments from frames on the data side to nodes
on the model side. At the intermediate level, frames are prematched to the corresponding parts on the
model side; match variables are necessary only at the lowest level (represented as bold lines with circles).

p and {p;} as well as the labelling of parts M. Thus, from Bayes Theorem

P(M,p, {p;}l{pr}) = = ({Pk}lM’Pé?{);}k)}z;’(M,p,{pj})

x P(M,p,{p;} {pt}) (2)

and recognition reduces to finding the most probable values for p, {p;} and M
given the data:

g P(M, p, {p;},{p+}) (3)

Solving the inference problem involves finding the MAP estimate and is is equivalent
to minimizing the exponent in equation (1) with respect to M, p and {p;,}.

2 Bootstrap: Coarse Scale Hints to Initialize the Network

2.1 Compositional Hierarchy and Scale Space

In some labelling approaches found in the vision literature, an object is first labelled
at the coarse, low resolution, level and approximate parameters are found. In this
top-down approach the information at the higher, more abstract, levels is used
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Figure 3: Compositional Hierarchy vs. Scale Space Hierarchy. A compositional hierarchy can represent a
scale space hierarchy. At successive levels in the hierarchy, more and more detail is added to the object.

to select initial values for the parts at the next lower level of abstraction. The
segmentation and labelling at this next lowest level is thus not done blindly; rather
it is strongly influenced contextually by the results at the level above.

In fact, in very general terms such a scheme was described by Marr and Nishihara [2].
They advocate in essence a hierarchical model base in which a shape is first matched
to the highest levels, and defaults in terms of relative object-based parameters of
parts at the next level are recalled from memory. These defaults then serve as initial
values in an unspecified segmentation algorithm that derives part parameters; this
step is repeated recursively until the lowest level is reached.

Note that the highest level of abstractions correspond to the coarsest levels of spatial
scale. There is nothing in the design of the model base that demands this, but invari-
ably, elements at the top of a compositional hierarchy are of coarser scale since they
must both include the many subparts below, and summarize this inclusion with
relatively few parameters. Figure 3 illustrates the correspondence between these
representations. In this sense, the compositional hierarchy as applied to shapes
includes a notion of scale, but there is no “scale-space” operation of intentionally
blurring data. The notion of Scale Space as utilized here thus differs from the
application of the method to low-level computations in the visual domain where
auxiliary coarse scale representations are computed explicitly. The object represen-
tations in the Frameville system as described earlier combines both, bottom-up and
top—down elements. If the top—down aspects of the scheme described by Marr and
Nishihara [2] could be incorporated into the Frameville architecture, then our pre-
vious simulation results [8] suggest that much better performance can be expected
from the neural network. Two problems must be addressed: (1) How do we obtain,
from the observed raw data alone, a coarse estimate of the slot parameters at the
highest level and (2) given these crude estimates how do we utilize them to recall
default settings for the segmentation one level below?
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Figure 4: Bootstrap computation for a network from a 3-level grammar. Analog frame variables at the
top and intermediate level are initialized from data by a bootstrap computation (bold lines indicate the
flow of information)

2.2 Initialization of Coarse Scale Parameters

We propose to aid convergence by supplying initial values for the analog variables p
and {p;}; these must be computed from data without making use of the labelling.
In general, it is not possible to solve for the analog parameters without knowledge
of the correct permutation matrix M. However, for the purpose of obtaining an
approximation p one can derive a new objective function that does not depend on
M and the parameters {p;} by integrating over the {p,} and summing over all
possible permutation matrices M:

Po,ipih)= 3 / d{p;}P(p, {p;}, {1}, M) (4)
(M} Mis a

permutation

This formulation leads to an Elastic Net type network [9, 7]. However, this imple-
mentation of a separate network for the bootstrap computations is expensive.

Here we use simpler computation where the coarse scale parameters are estimated
by computing sample averages, corresponding to finding the solution for the Elastic
Net in the high temperature limit [7]. For the position x we find, after integrating
over the {x;},

1 Mpmp Tk 1 Z Ugmz

2 _2 2 =2 - 2 2 2
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and similarly for y. Since the assignment Mg, of subparts k on the data side
to subparts Am on the model side is not known at this point, the first term in
equations (5) cannot be evaluated. After approximating the actual variance with
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an average variance, these equations reduce to
" 1 1 1
i = Ty — UGmz — = ) UG (6)
NgNp, Zk: NgN, ﬁzm ™% Ng Zg: #

In terms of the objective function this translates into assuming that here the error
terms for all parts are weighted equally. Since these weights would depend on the
actual part match, this just corresponds to our ignorance regarding identity of the
parts. This approximation assumes that the variances do not differ by a large
amount, otherwise the approximation p will not be close to the true values. Since
the model can be designed such that the part primitives used at the lowest level
of the grammar are not highly specialized as would be the case for abstractions
at higher levels of the model, the approximation proved sufficient for the problems
studied here.

The neural network can be used to perform the calculation. The Elastic Net for-
mulation assigns approximately equal weights to all possible assignments at high
temperatures. Thus, this behavior can be expressed in the original network with
match variables by choosing Mg = 1/(NgNy,) V i,j. This leads to the following
two-pass bootstrap computation. Using this specific choice for M only the analog
variables need to be updated to compute the coarse scale estimates. The network
with constant M is just the neural network implementation for computing X from
equation (6). After these have converged, X can be used to compute X; = X + ug.
Thus, the parameters for intermediate levels can by hypothesized from the coarse
scale estimate X by adding the known transformation (recall that for intermediate
levels, the part identity is preserved and no permutation steps takes place (see Fig-
ure 2)). Then the network is restarted with random values for the match variables
to compute the correct labelling and the correct parameters.

2.3 Simulation Results

The bootstrap procedure has been implemented for a 3-level hierarchical model. The
model describes a “gingerbread man” as shown in Figure 3. The incorrect solutions
observed did not, in the vast majority of cases, violate the permutation matrix
constraint, i.e. the assignment was unique. However, even though the assignment
is unique, parts where not always assigned correctly. Most commonly, the identity
of neighboring parts was interchanged, in particular for cases with large variance.

The advantage of using the bootstrap initialization is clear from Figure 5. For
the simulation, 03 = 20%; the noise variance was identical for all parts. The net-
work computed the solution reliably for large noise variances. In such cases the
performance of the network without initialization deteriorates rapidly. Only one
set of 10 experiments was used for the graph but in all simulations performed,
the network with initialization consistently outperformed the network without ini-
tialization. Figure 5(right) shows the time measured in the number of iterations
necessary for the network to converge; it is almost unaffected by the increase in the
noise variance. This is because the initial values derived from data are still close
to the final solution. While in some cases, the random starting point happens to
be close to the correct solution and the network without initialization converges
rapidly, Figure 5 reflect the typical behavior and demonstrate the advantage of
computing approximate initial values.
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Figure 5: Results Comparing the Network without and with Initialization (solid line).
Left: The success rate indicates the rate at which the network converged to the correct solutions. 012

denotes the noise variance at the intermediate level of the model and or% the noise variance at the lowest
level. Only one set of 10 experiments was used for the graph but in all simulations performed, the
network with initialization consistently outperformed the network without initialization.

Right: The graph shows the average time it takes for the network to converge (as measured by the
number of iterations) averaged over 10 experiments. Only simulations where the network converged to
the correct solution are used to compute the average time for convergence. The stopping criterion used
required all the match neurons to assume values M,; > 0.95 or M,; < 0.05. The error bars denote the
standard deviation.
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