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Abstract 

So far there has been no general method for relating extracellular 
electrophysiological measured activity of neurons in the associative 
cortex to underlying network or "cognitive" states. We propose 
to model such data using a multivariate Poisson Hidden Markov 
Model. We demonstrate the application of this approach for tem­
poral segmentation of the firing patterns, and for characterization 
of the cortical responses to external stimuli. Using such a statisti­
cal model we can significantly discriminate two behavioral modes 
of the monkey, and characterize them by the different firing pat­
terns, as well as by the level of coherency of their multi-unit firing 
activity. 
Our study utilized measurements carried out on behaving Rhesus 
monkeys by M. Abeles, E. Vaadia, and H. Bergman, of the Hadassa 
Medical School of the Hebrew University. 

1 Introduction 

Hebb hypothesized in 1949 that the basic information processing unit in the cortex 
is a cell-assembly which may include thousands of cells in a highly interconnected 
network[l]. The cell-assembly hypothesis shifts the focus from the single cell to the 
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complete network activity. This view has led several laboratories to develop technol­
ogy for simultaneous multi-cellular recording from a small region in the cortex[2, 3]. 
There remains, however, a large discrepancy between our ability to construct neural­
network models and their correspondence with such multi-cellular recordings. To 
some extent this is due to the difficulty in observing simultaneous activity of any 
significant number of individual cells in a living nerve tissue. Extracellular elec­
trophysiological measurements have so far obtained simultaneous recordings from 
just a few randomly selected cells (about 10), a negligibly small number compared 
to the size of the hypothesized cell-assembly. It is quite remarkable therefore, that 
such local measurements in the associative cortex have yielded so much information, 
such as synfire chains [2], multi-cell firing correlation[6], and statistical correlation 
between cell activity and external behavior. However, such observations have so 
far relied mostly on the accumulated statistics of cell firing over a large number of 
repeated experiments, to obtain any statistically significant effect. This is due to 
the very low firing rates (about 10Hz) of individual cells in the associative cortex, 
as can be seen in figure 1. 
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Figure 1: An example of firing times of a single unit. Shown are 48 repetitions of 
the same trial, aligned by the external stimulus marker, and drawn horizontally one 
on top of another. The accumulated histogram estimates the firing rate in 50msec 
bins, and exhibits a clear increase of activity right after the stimulus. 

Clearly, simultaneous measurements of the activity of 10 units contain more infor­
mation than single unit firing and pairwise correlations. The goal of the present 
study is to develop and evaluate a statistical method which can better capture the 
multi- unit nature of this data, by treating it as a vector stochastic process. The 
firing train of each of these units is conventionally modeled as a Poisson process 
with a time-dependent average firing rate[2]. Estimating the firing rate parameter 
requires careful averaging over a sliding window. The size of this window should be 
long enough to include several spikes, and short enough to capture the variability. 
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Within such a window the process is characterized by a vector of average rates, and 
possibly higher order correlations between the units. 

The next step, in this framework, is to collect such vector-frames into statistically 
similar clusters, which should correspond to similar network activity, as reflected 
by the firing of these units. Furthermore, we can facilitate the well-established 
formulation of Hidden-Markov-Models[7] to estimate these "hidden" states of the 
network activity, similarly to the application of such models to other stochastic 
data, e.g. speech. The main advantage of this approach is its ability to characterize 
statistically the multi-unit process, in an unsupervised manner, thus allowing for 
finer discrimination of individual events. In this report we focus on the statistical 
discrimination of two behavioral modes, and demonstrate not only their distinct 
multi-unit firing patterns, but also the fact that the coherency level of the firing 
activity in these two modes is significantly different. 

2 Origin of the data 

The data used for the present analysis was collected at the Hadassa Medical School, 
by recording from a Rhesus monkey Macaca Mulatta who was trained to perform a 
spatial delayed release task. In this task the monkey had to remember the location 
from which a stimulus was given and after a delay of 1-32 seconds, respond by 
touching that location. Correct responses were reinforced by a drop of juice. After 
completion of the training period, the monkey was anesthetized and prepared for 
recording of electrical activity in the frontal cortex. After the monkey recovered 
from the surgery the activity of the cortex was recorded, while the monkey was 
performing the previously learned routine. Thus the recording does not reflect 
the learning process, but rather the cortical activity of the well trained monkey 
while performing its task. During each of the recording sessions six microelectrodes 
were used simultaneously. With the aid of two pattern detectors and four window­
inscriminates, the activity of up to 11 single units (neurons) was concomitantly 
recorded. The recorded data contains the firing times of these units, the behavioral 
events of the monkey, and the electro-occulogram (EOG)[5, 2,4]. 

2.1 Behavioral modes 

To understand the results reported here it is important to focus on the behavioral 
aspect of these experiments. The monkey was trained to perform a spatial delayed 
response task during which he had to alternate between two behavioral modes. The 
monkey initiated the trial, by pressing a central key, and a fixation light was turned 
on in front of it. Then after 3-6 seconds a visual stimulus was given either from the 
left or from the right. The stimulus was presented for 100 millisec. After a delay 
the fixation light was dimmed and the monkey had to touch the key from which the 
visual stimulus came ("Go" mode), or keep his hand on the central key regardless 
of the external stimulus ("No-Go" mode). For the correct behavior the monkey was 
rewarded with a drop of juice. After 4 correct trials all the lights in front of the 
monkey blinked (this is called "switch" henceforth), signaling the monkey to change 
the behavioral mode - so that if started in the "Go" mode he now had to switch to 
"No-Go" mode, or vice versa. 
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There is a clear statistical indication, based on the accumulated firing histograms, 
that the firing patterns are different in these two modes. One of our main exper­
imental results so far is a more quantitative analysis of this observation, both in 
terms of the firing patterns directly, and by using a new measure of the coherency 
level of the firing activity. 
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Figure 2: Multi-unit firing trains and their statistical segmentation by the model. 
Shown are 4 sec. of activity, in two trials, near the "switch". Estimated firing rates 
for each channel are also plotted on top of the firing spikes. The upper example is 
taken from the training data, while the lower is outside of the training set. Shown 
are also the association probabilities for each of the 8 states of the model. The 
monkey's cell-assembly clearly undergoes the state sequence "1", "5", "6", "5" in 
both cases. Similar sequence was observed near the same marker in many (but not 
all) other instances of the same event during that measurement day. 

2.2 Method of analysis 

As was indicated before, most of the statistical analysis so far was done by accu­
mulating the firing patterns from many trials, aligned by external markers. This 
supervised mode of analysis can be understood from figure 1, where 48 different 
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"Go" firing trains of a single unit are aligned by the marker. There is a clear in­
crease in the accumulated firing rate following the marker, indicating a response of 
this unit to the stimulus. In contrast, we would like to obtain, in an unsupervised 
self organizing manner, a statistical characterization of the multi-unit firing activity 
around the marked stimuli, as well as in other unobserved cortical processes. We 
claim to achieve this goal through characteristic sequences of Markov states. 

3 Multivariate Poisson Hidden Markov Model 

The following statistical assumptions underlie our model. Channel firing is dis­
tributed according to a Poisson distribution. The distances between spikes are 
distributed exponentially and their number in each frame, n, depends only on the 
mean firing rate A, through the distribution 

e-AAn 

PA(n) = I . n. 
(1) 

The estimation of the parameter A is performed in each channel, within a sliding 
window of 500ms length, every lOOms. These overlapping windows introduce corre­
lations between the frames, but generate less noisy, smoother, firing curves. These 
curves are depicted on top of the spike trains for each unit in figure 2. 

The multivariate Poisson process is taken as a Maximum Entropy distribution with 
i.i.d. Poisson prior, subject to pairwise channel correlations as additional con­
straints, yielding the following parametric distribution 

d 

PA(nl,n2, ... ,nd) = II PA,(ni) exp[ - LAij(ni - Ad(nj - Aj) - AO]' (2) 
ij 

The Aij are additional Lagrange multipliers, determined by the observed pairwise 
correlation E[( ni - Ad( nj - Aj)), while AO ensures the normalization. In the anal­
ysis reported here the pairwise correlation term has not been implemented. 

The statistical distance between a frame and the cluster centers is determined by 
the probability that this frame is generated by the centroid distribution. This 
probability is asymptotically fixed by the empirical information divergence (KL 
distance) between the processes[8, 9]. For I-dimensional Poisson distributions the 
divergence is simply given by 

(3) 

The uncorrelated multi-unit divergence is simply the sum of divergences for all the 
units. Using this measure, we can train a multivariate Poisson Hidden Markov 
Model, where each state is characterized by such a vector Poisson process. This is 
a special case of a method called distributional clustering, recently developed in a 
more general setup[IO]. 

The clustering provides us with the desired statistical segmentation of the data into 
states. The probability of a frame, Xt, to belong to a given state, Sj, is determined 
by the probability that the vector firing pattern is generated by the state centroid's 
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distribution. Under our model assumptions this probability is a function solely of 
the empirical divergences, Eq.(3), and is given by 

(4) 

where f3 determines the "cluster-hardness". These state probability curves are plot­
ted in figure 2 in correspondence with the spike trains. The most probable state at 
each instance determines the most likely segmentation of the data, and the frames 
are labeled by this most probable state number. These labels are also shown on top 
of the spike trains in figure 2. 

4 Experimental results 

We used about 6000 seconds of recordings done during a single day. It is important 
to note that this was an exceptionally good day in terms of the measurement quality. 
During that period the monkey performed 60 repetitions of his trained routine, in 
sets of 4 trials of "Go" mode, followed by 4 trials in the "No-Go" mode. We selected 
the 8 most active recorded units for our modeling. The training of the models was 
done on the first 4000 seconds of recording, 2000 seconds for each mode, while the 
rest was used for testing. 

4.1 The nature of the segmentation 

Any method can segment the data in some way, but the point is to obtain reliable 
predictions using this segmentation. As always, there is some arbitrariness in the 
choice of the number of states (or clusters), which ideally is determined by the 
data. Here we tested only 8 and 15 states, and in most cases 8 were sufficient for 
our purposes. Since we used "fuzzy", or "soft" clustering, each frame has some 
probability of belonging to any of the clusters. Although in most cases the most 
likely state is clearly defined, the complete picture is seen only from the complete 
association distribution. Notice, e.g., in the lower segment of figure 2, where a most 
likely state "7" "pops up" between states "6" and "5", but is clearly not significant, 
as seen from the corresponding probability curve. 

4.2 Characterization of events by state-sequences 

The first test of the segmentation is whether it is correlated with the external 
markers in any way. Since the markers were not used in any way during the training 
of the model (clustering), such correlations is a valid test of consistency. Moreover, 
one would like this correspondence to the markers to hold also outside of the training 
data. An exhaustive statistical examination of this question has not been made, 
as yet, but we could easily find many instances of similar state sequences near the 
same external marker, both within and outside of the training data. In figure 2 we 
bring a typical example to this effect. The next step is to train smallieft-to-right 
Markov models to spot these events more reliably. 
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Figure 3: Average firing rates for each unit in each state, for the "Go" and «No-
Go" modes. Notice that while no single unit clearly discriminates the two modes, 
their overall statistical discrimination is big enough that on average 100 frames are 
enough to determine the correct mode, more than 95% of the time_ 

4.3 Statistical Inference of "Go" and "No-Go" modes 

Next we examined the statistical difference between models trained on the "Go" 
vs. "No-Go" modes. Here we obtained a highly significant difference in the cluster 
centroid's distributions, as shown in figure 3. The average statistical divergence be­
tween different clusters within each mode were 9.18 and 9.52 (natural logarithm) ,in 
«Go" and "No-Go" respectively, while in between those modes the divergence was 
more than 35. 

4.4 Behavioral mode and the network firing coherency 

In addition to the clearly different cluster centers in the two modes, there is another 
interesting and unexpected difference_ We would like to call this firing coherency 
level, and it characterize the spread of the data around the cluster centers. The 
average divergence between the frames and their most likely state is consistently 
much higher in the "No-Go" mode than in the "Go" mode (figure 4). This is in 
agreement with the assumption that correct performance of the «No-Go" paradigm 
requires little attention, and therefore the brain may engage in a variety of processes. 
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Figure 4: Firing coherency in the two behavioral modes at different clustering trials. 
The "No-Go" average divergence to the cluster centers is systematically higher than 
in the "Go" mode. The effect is shown for both 8 and 15 states, and is even more 
profound with 8 states. 
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