
Second order derivatives for network
pruning: Optimal Brain Surgeon

Babak Hassibi* and David G. Stork
Ricoh California Research Center
2882 Sand Hill Road, Suite 115

Menlo Park, CA 94025-7022
stork@crc.ricoh.com

and

* Department of Electrical Engineering
Stanford University
Stanford, CA 94305

Abstract
We investigate the use of information from all second order derivatives of the error
function to perfonn network pruning (i.e., removing unimportant weights from a trained
network) in order to improve generalization, simplify networks, reduce hardware or
storage requirements, increase the speed of further training, and in some cases enable rule
extraction. Our method, Optimal Brain Surgeon (OBS), is Significantly better than
magnitude-based methods and Optimal Brain Damage [Le Cun, Denker and Sol1a, 1990],
which often remove the wrong weights. OBS permits the pruning of more weights than
other methods (for the same error on the training set), and thus yields better
generalization on test data. Crucial to OBS is a recursion relation for calculating the
inverse Hessian matrix H-I from training data and structural information of the net. OBS
permits a 90%, a 76%, and a 62% reduction in weights over backpropagation with weighL
decay on three benchmark MONK's problems [Thrun et aI., 1991]. Of OBS, Optimal
Brain Damage, and magnitude-based methods, only OBS deletes the correct weights from
a trained XOR network in every case. Finally, whereas Sejnowski and Rosenberg [1987J
used 18,000 weights in their NETtalk network, we used OBS to prune a network to just
1560 weights, yielding better generalization.

1 Introduction
A central problem in machine learning and pattern recognition is to minimize the system complexity
(description length, VC-dimension, etc.) consistent with the training data. In neural networks this
regularization problem is often cast as minimizing the number of connection weights. Without such weight
elimination overfilting problems and thus poor generalization will result. Conversely, if there are too few
weights, the network might not be able to learn the training data.

If we begin with a trained network having too many weights, the questions then become: Which weights
should be eliminated? How should the remaining weights be adjusted for best performance? How can such
network pruning be done in a computationally efficient way?

164

Second order derivatives for network pruning: Optimal Brain Surgeon 165

Magnitude based methods [Hertz, Krogh and Palmer, 1991] eliminate weights that have the smallest
magnitude. This simple and naively plausible idea unfortunately often leads to the elimination of the wrong
weights - small weights can be necessary for low error. Optimal Brain Damage [Le Cun, Denker and
Solla, 1990] uses the criterion of minimal increase in training error for weight elimination. For
computational simplicity, OBD assumes that the Hessian matrix is diagonal: in fact. however, Hessians for
every problem we have considered are strongly non-diagonal, and this leads OBD to eliminate the wrong
weights. The superiority of the method described here - Optimal Brain Surgeon - lies in great pan to the
fact that it makes no restrictive assumptions about the form of the network's Hessian, and thereby
eliminates the correct weights. Moreover, unlike other methods, OBS does not demand (typically slow)
retraining after the pruning of a weight.

2 Optimal Brain Surgeon
In deriving our method we begin, as do Le Cun, Denker and Solla [1990], by considering a network trained
to a local minimum in error. The functional Taylor series of the error with respect to weights (or
parameters, see below) is:

(1)

where H = ;]2 E/ aw2 is the Hessian matrix (containing all second order derivatives) and the superscript
T denotes vector transpose. For a network trained to a local minimum in error, the first (linear) term
vanishes: we also ignore the third and all higher order terms. Our goal is then to set one of the weights to
zero (which we call wq) to minimize the increase in error given by Eq. l. Eliminating Wq is expressed as:

owq+wq =0 ormoregenerally e~ ·OW+Wq =0 (2)
where eq is the unit vector in weight space corresponding to (scalar) weight wq• Our goal is then to solve:

Minq {Mint5w l! OW T . H . ow} such that e~. ow + W q = O} (3)
To solve Eq. 3 we form a Lagrangian from Eqs. 1 and 2:

L = 1- ow T . H . ow + A (e~ . ow + W q) (4)

where A. is a Lagrange undetermined multiplier. We take functional derivatives, employ the constraints of
Eq. 2, and use matrix inversion to find that the optimal weight change and resulting change in error are:

w 1 w2
ow = - q H-1 • e and L = - q (5)

[H-1] q q 2 [H-1] qq qq
Note that neither H nor H· I need be diagonal (as is assumed by Le Cun et al.): moreover, our method
recalculates the magnitude of all the weights in the network, by the left side of Eq. 5. We call Lq the
"saliency" of weight q - the increase in error that results when the weight is eliminated - a definition
more general than Le Cun et al. 's, and which includes theirs in the special case of diagonal H.

Thus we have the following algorithm:
Optimal Brain Surgeon procedure

1. Train a "reasonably large" network to minimum error.
2. Compute H· I .

3. Find the q that gives the smallest saliency Lq = Wq 2/(2[H· I]qq). If this candidate error
increase is much smaller than E, then the qth weight should be deleted, and we
proceed to step 4; otherwise go to step 5. (Other stopping criteria can be used too.)

4. Use the q from step 3 to update all weights (Eq. 5). Go to step 2.
5. No more weights can be deleted without large increase in E. (At this point it may be

desirable to retrain the network.)

Figure 1 illustrates the basic idea. The relative magnitudes of the error after pruning (before retraining. if
any) depend upon the particular problem, but to second order obey: E(mag) ~ E(OBD) ~ E(OBS). which is
the key to the superiority of OBS. In this example OBS and OBD lead to the elimination of the same
weight (weight 1). In many cases, however. OBS will eliminate different weights than those eliminated by
OBD (cf. Sect. 6). We call our method Optimal Brain Surgeon because in addition to deleting weights, it

166 Hassibi and Stork

calculates and changes the strengths of other weights without the need for gradient descent or other
incremental retraining.

Figure 1: Error as a function of two weights in a
network. The (local) minimum occurs at weight
w·, found by gradient descent or other learning
method. In this illustration, a magnitude based
pruning technique (mag) then removes the
smallest weight, weight 2; Optimal Brain
Damage before retraining (OBD) removes
weight I. In contrast, our Optimal Brain
Surgeon method (OBS) not only removes weight
I, but also automatically adjusts the value of
weight 2 to minimize the error, without
retraining. The error surface here is general in
that it has different curvatures (second
derivatives) along different directions, a
minimum at a non-special weight value, and a
non-diagonal Hessian (i.e., principal axes are not
parallel to the weight axes). We have found (to
our surprise) that every problem we have
investigated has strongly non-diagonal Hessians
- thereby explaining the improvment of our
method over that of Le Cun et al.

3 Computing the inverse Hessian
The difficulty appears to be step 2 in the OBS procedure, since inverting a matrix of thousands or millions
of terms seems computationally intractable. In what follows we shall give a general derivation of the
inverse Hessian for a fully trained neural network. It makes no difference whether it was trained by
backpropagation, competitive learning, the Boltzmann algorithm, or any other method, so long as
derivatives can be taken (see below). We shall show that the Hessian can be reduced to the sample
covariance matrix associated with certain gradient vectors. Furthennore, the gradient vectors necessary for
OBS are normally available at small computational cost; the covariance form of the Hessian yields a
recursive formula for computing the inverse.

Consider a general non-linear neural network that maps an input vector in of dimension nj into an output
vector 0 of dimension no' according to the following:

0= F(w,in) (6)
where w is an n dimensional vector representing the neural network's weights or other parameters. We
shall refer to w as a weight vector below for simplicity and definiteness, but it must be stressed that w could
represent any continuous parameters, such as those describing neural transfer function, weight sharing, and
so on. The mean square error corresponding to the training set is dermed as:

E = _1 i(t[k] _ o[k]{ (t[k] _ o[k])

2P k=1
(7)

where P is the number of training patterns, and t lk] and olk] are the desired response and network response
for the kth training pattern. The first derivative with respect to w is:

aE = _! i aF(w,in[k) (t[k) _ o[k])

(Jw P k=1 dw
(8)

and the second derivative or Hessian is:

a2E 1 P aF(w in[k]) aF(w,in[k]{
H=--2 =- L[,

dw P k=1 (Jw (Jw

:l2 • [k]
(J F(w,m) . (t[k) _ o[k)]

(Jw2
(9)

Second order derivatives for network pruning: Optimal Brain Surgeon 167

Next we consider a network fully trained to a local minimum in error at w*. Under this condition the
network response O[k] will be close to the desired response t[k], and hence we neglect the tenn involving
(t[k]- ork]). Even late in pruning, when this error is not small for a single pattern, this approximation can be
justified (see next Section). This simplification yields:

H =! f dF(w,in[k]). dF(w,in[k) T

p k=1 dw dw
(10)

If out network has just a single output, we may define the n-dimensional data vector Xrk] of derivatives as:

X[k) = dF(w,in[k]) (11)

aw
Thus Eq. 10 can be written as: H =! fX[k). X[k]T

P k=1
If instead our network has mUltiple output units, then X will be an n x no matrix of the fonn:

(12)

X[k] = dF(w,in[k]) = (dF1(w,in[k]) dFno (W,in[k]» [kJ [k]
aw aw aw = (Xl •...• Xno) (13)

where F j is the ith component of F. Hence in this multiple output unit case Eq. 10 generalizes to:

H =! f rx~k). X~k]T (14)
P k=ll=1

Equations 12 and 14 show that H is the sample covariance matrix associated with the gradient variable X.
Equation 12 also shows that for the single output case we can calculate the full Hessian by sequentially
adding in successive "component" Hessians as:

H - H + .!.X[m+I]. X[m+l]T with HO = aI and Hp = H (15)
m+l- m P

But Optimal Brain Surgeon requires the inverse of H (Eq. 5). This inverse can be calculated using a
standard matrix inversion fonnula [Kailath, 1980]:

(A + 8 . C . 0)-1 = A-I - A-I. 8 . (C- I + D. A-I. 8)-1 . D . A-I (16)
applied to each tenn in the analogous sequence in Eq. 16:

H-1 . X[m+1) . X[m+1)T . H-I
H- I - H-I - m m with HOi = a-II and Hpl = H-I

m+1 - m p + x[m+I)T . H-I . X[m+lI
m

(17)

and a (l0·8 S a S 10-4) a small constant needed to make HO•I meaningful , and to which our method is
insensitive [Hassibi, Stork and Wolff, 1993b]. Actually, Eq. 17 leads to the calculation of the inverse of
(H + ciI), and this corresponds to the introduction of a penalty term allliwll2 in Eq. 4. This has the benefit
of penalizing large candidate jumps in weight space, and thus helping to insure that the neglecting of higher
order Lenns in Eq. 1 is valid.

Equation 17 permits the calculation of H· I using a single sequential pass through the training data
1 S m S P. It is also straightforward to generalize Eq. 18 to the multiple output case of Eq. 15: in this case
Eq. 15 will have recursions on both the indices m and I giving:

H - H 1 x[m) X[m)T
m 1+1 - ml + - 1+1' 1+1

P

H = H + ! x[m+1) . X[m+I]T
m+11 milo P 1 I

(18)

To sequentially calculate U- I for the multiple output case, we use Eq. 16, as before.

4 The (t - 0) ~ 0 approximation
The approximation used for Eq. 10 can be justified on computational and functional grounds, even late in
pruning when the training error is not negligible. From the computational view, we note [rrst that nonnally
H is degenerate - especially before significant pruning has been done - and its inverse not well defined.

168 Hassibi and Stork

The approximation guarantees that there are no singularities in the calculation of H-1• It also keeps the
computational complexity of calculating H-1 the same as that for calculating H - O(p n2). In Statistics the
approximation is the basis of Fisher's method of scoring and its goal is to replace the true Hessian with its
expected value and guarantee that H is positive definite (thereby avoiding stability problems that can
plague Gauss-Newton methods) [Seber and Wild, 1989].
Equally important are the functional justifications of the approximation. Consider a high capactiy network
trained to small training error. We can consider the network structure as involving both signal and noise.
As we prune, we hope to eliminate those weights that lead to "overfilting," i.e., learning the noise. If our
pruning method did not employ the (t - 0) ~ 0 approximation, every pruning step (Eqs. 9 and 5) would
inject the noise back into the system, by penalizing for noise tenns. A different way to think of the
approximation is the following. After some pruning by OBS we have reached a new weight vector that is a
local minimum of the error (cf. Fig. 1). Even if this error is not negligible, we want to stay as close to that
value of the error as we can. Thus we imagine a new, effective teaching signal t*, that would keep the
network near this new error minimum. It is then (t* - 0) that we in effect set to zero when using Eq. 10
instead of Eq. 9.

5 aBS and back propagation
Using the standard tennino)ogy from backpropagation [Rumelhart, Hinton and Williams, 1986J and the
single output network of Fig. 2, it is straightforward to show from Eq. 11 that the derivative vectors are:

[k] - (x~]J X - [k] (19)
Xu

where (20)

refers to derivatives with respect to hidden-to-output weights Vj and

[X~.t)]T = (f' (net[.t)f (net\.t)v\.t)o~!L f' (net[.t)f (net\.t)v~.t)o~~) ,

(21)
f (net[.t)f' (net~.t)v~~)o\.t) f (net(.t)f (net~.t.)V~.t.)o~~l)

J J J J I

refers to derivatives with respect to input-to-hidden weights uji' and where lexicographical ordering has
been used. The neuron nonlinearity is f(·).

6

output

hidden

input i = n· 1

Figure 2: Backpropagation net with lli inputs and nj hidden units. The input-to-hidden
weights are Uji and hidden-to-output weights Vj. The derivative ("data") vectors are Xv
and Xu (Eqs. 20 and 21).

Simulation results
We applied OBS, Optimal Brain Damage, and a magnitude based pruning method to the 2-2-1 network
with bias unit of Fig. 3, trained on all patterns of the XOR problem. The network was first trained to a local
minimum, which had zero error, and then the three methods were used to prune one weight. As shown,the
methods deleted different weights. We then trained the original XOR network from different initial
conditions, thereby leading to a different local minima. Whereas there were some cases in which OBD or
magnitude methods deleted the correct weight, only OBS deleted the correct weight in every case.
Moreover, OBS changed the values of the remaining weights (Eq.5) to achieve perfect perfonnance
without any retraining by the backpropagation algorithm. Figure 4 shows the Hessian of the trained but
unpruned XOR network.

output

hidden

input

Second order derivatives for network pruning: Optimal Brain Surgeon 169

Figure 3: A nine weight XOR network trained
to a local minimum. The thickness of the lines
indicates the weight magnitudes, and inhibitory
weights are shown dashed. Subsequent pruning
using a magnitude based method (Mag) would
delete weight v3; using Optimal Brain Damage
(OBD) would delete U22. Even with retraining,
the network pruned by those methods cannot
learn the XOR problem. In contrast, Optimal
Brain Surgeon (OBS) deletes U23 and furthennore
changed all other weights (cf. Eq. 5) to achieve
zero error on the XOR problem.

Figure 4: The Hessian of the trained but
unpruned XOR network, calculated by means of
Eq. 12. White represents large values and black
small magnitudes. The rows and columns are
labeled by the weights shown in Fig. 3. As is to
be expected, the hidden-to-output weights have
significant Hessian components. Note especially
that the Hessian is far from being diagonal. The
Hessians for all problems we have investigated,
including the MONK's problems (below), are far
from being diagonal.

VI v2 v3 UII Ul2 u13 u21 u22 U23

Figure 5 shows two-dimensional "slices" of the nine-dimensional error surface in the neighborhood of a
local minimum at w· for the XOR network. The cuts compare the weight elimination of Magnitude
methods (left) and OBD (right) with the elimination and weight adjustment given by OBS.

E

U23
o

-1

-2

V3 u22
Figure 5: (Left) the XOR error surface as a function of weights V3 and U23 (cf. Fig. 4). A
magnitude based pruning method would delete weight V3 whereas OBS deletes U23.
(Right) The XOR error surface as a function of weights U22 and U23. Optimal Brain
Damage would delete U22 whereas OBS deletes U23. For this minimum, only deleting U23
will allow the pruned network to solve the XOR problem.

E

170 Hassibi and Stork

After all network weights are updated by Eq. 5 the system is at zero error (not shown). It is especially
noteworthy that in neither case of pruning by magnitude methods nor Optimal Brain Damage will further
retraining by gradient descent reduce the training error to zero. In short, magnitude methods and Optimal
Brain Damage delete the wrong weights, and their mistake cannot be overcome by further network training.
Only Optimal Brain Surgeon deletes the correct weight.

We also applied OBS to larger problems, three MONK's problems, and compared our results to those of
Thrun et al. [1991], whose backpropagation network outperformed all other approaches (network and rule­
based) on these benchmark problems in an extensive machine learning competition.

Accuracy
training testing # weights

MONKl BPWD 100 100 58

aBS 100 100 14

MONK 2
BPWD 100 100 39

aBS 100 100 15

BPWD 93.4 97.2 39
aBS 93.4 97.2 4 MONK 3

Table 1: The accuracy and number of weights found by backpropagation with weight
decay (BPWD) found by Thrun etal. [1991], and by OBS on three MONK's problems.

Table I shows that for the same perfonnance, OBS (without retraining) required only 24%, 38% and 10%
of the weights of the backpropagation network, which was already regularized with weight decay (Fig. 6).
The error increaseL (Eq. 5) accompanying pruning by OBS negligibly affected accuracy.

", .' ,
_- I. l-..... .-'......

Figure 6: Optimal networks found by Thrun using backpropagation with weight decay
(Left) and by OBS (Right) on MONK I, which is based on logical rules. Solid (dashed)
lines denote excitatory (inhibitory) connections; bias units are at left.

The dramatic reduction in weights achieved by OBS yields a network that is simple enough that the logical
rules that generated the data can be recovered from the pruned network, for instance by the methods of
Towell and Shavlik [1992]. Hence OBS may help to address a criticism often levied at neural networks:
the fact that they may be unintelligible.

We applied OBS to a three-layer NETtalk network. While Sejnowski and Rosenberg [1987] used 18,000
weights, we began with just 5546 weights, which after backpropagation training had a test error of 5259.
After pruning this net with OBS to 2438 weights, and then retraining and pruning again, we achieved a net
with only 1560 weights and test error of only 4701 - a significant improvement over the original, more
complex network [Hassibi, Stork and Wolff, 1993a]. Thus OBS can be applied to real-world pattern
recognition problems such as speech recognition and optical character recognition, which typically have
several thousand parameters.

7 Analysis and conclusions
Why is Optimal Brain Surgeon so successful at reducing excess degrees of freedom? Conversely, given
this new standard in weight elimination, we can ask: Why are magnitude based methods so poor?
Consider again Fig. 1. Starting from the local minimum at w·, a magnitude based method deletes the
wrong weight, weight 2, and through retraining, weight 1 will increase. The final "solution" is
weight 1 4 large, weight 2 = O. This is precisely the opposite of the solution found by OBS: weight 1 = 0,
weight 2 4 large. Although the actual difference in error shown in Fig. 1 may be small, in large networks,
differences from many incorrect weight elimination decisions can add up to a significant increase in error.

Second order derivatives for network pruning: Optimal Brain Surgeon 171

But most importantly, it is simply wishful thinking to believe that after the elimination of many incorrect
weights by magnitude methods the net can "sort it all out" through further training and reach a global
optimum, especially if the network has already been pruned significantly (cf. XOR discussion, above).

We have also seen how the approximation employed by Optimal Brain Damage - that the diagonals of the
Hessian are dominant - does not hold for the problems we have investigated. There are typically many
off-diagonal terms that are comparable to their diagonal counterparts. This explains why OBD often
deletes the wrong weight, while OBS deletes the correct one.

We note too that our method is quite general, and subsumes previous methods for weight elimination. In
our terminology, magnitude based methods assume isotropic Hessian (H ex I); OBD assumes diagonal H:
FARM [Kung and Hu, 1991] assumes linear f(net) and only updates the hidden-to-output weights. We
have shown that none of those assumptions are valid nor sufficient for optimal weight elimination.

We should also point out that our method is even more general than presented here [Hassibi, Stork and
Wotff, 1993bl. For instance, rather than pruning a weight (parameter) by setting it to zero, one can instead
reduce a degree of freedom by projecting onto an arbitrary plane, e.g., Wq = a constant, though such
networks typically have a large description length [Rissanen, 1978]. The pruning constraint w q = 0
discussed throughout this paper makes retraining (if desired) particularly simple. Several weights can be
deleted simultaneously; bias weights can be exempt from pruning, and so forth. A slight generalization of
OBS employs cross-entropy or the Kullback-Leibler error measure, leading to Fisher Infonnation matrix
rather than the Hessian (Hassibi, Stork and Wolff, 1993b). We note too that OBS does not by itself give a
criterion for when to stop pruning, and thus OBS can be utilized with a wide variety of such criteria.
Moreover, gradual methods such as weight decay during learning can be used in conjunction with OBS.

Acknowledgements
The first author was supported in part by grants AFOSR 91-0060 and DAAL03-91-C-OOlO to T. Kailath,
who in tum provided constant encouragement Deep thanks go to Greg Wolff (Ricoh) for assistance with
simulations and analysis, and Jerome Friedman (Stanford) for pointers to relevant statistics literature.

REFERENCES
Hassibi, B. Stork, D. G. and Wolff, G. (1993a). Optimal Brain Surgeon and general network pruning

(submitted to ICNN, San Francisco)

Hassibi, B. Stork, D. G. and Wolff, G. (1993b). Optimal Brain Surgeon, Information Theory and network
capacity control (in preparation)

Hertz, J., Krogh, A. and Palmer, R. G. (1991). Introduction to the Theory of Neural Computation
Addison-Wesley.

Kailath, T. (1980). Linear Systems Prentice-Hall.

Kung, S. Y. and Hu, Y. H. (1991). A Frobenius approximation reduction method (FARM) for detennining
the optimal number of hidden units, Proceedings of the IJCNN-9I Seattle, Washington.

Le Cun, Y., Denker, J. S. and SoUa, S. A. (1990). Optimal Brain Damage, in Proceedings of the Neural
Information Processing Systems-2, D. S. Touretzky (ed.) 598-605, Morgan-Kaufmann.

Rissanen, J. (1978). Modelling by shortest data description, Aulomatica 14,465-471.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning Internal representations by error
propagation, Chapter 8 (318-362) in Parallel Distributed Processing I D. E. Rumelhart and J. L.
McClelland (eds.) MIT Press.

Seber, G. A. F. and Wild, C. J. (1989). Nonlinear Regression 35-36 Wiley.

Sejnowski, T. J., and Rosenberg, C. R. (1987). Parallel networks that learn to pronounce English text,
Complex Syslems I, 145-168.

Thrun, S. B. and 23 co-authors (1991). The MONK's Problems - A perfonnance comparison of different
learning algorithms, CMU-CS-91-197 Carnegie-Mellon U. Department of Computer ScienceTech
Report.

Towell, G. and Shavlik, J. W. (1992). Interpretation of artificial neural networks: Mapping knowledge­
based neural networks into rules, in Proceedings of the Neural In/ormation Processing Systems-4,].
E. Moody, D. S. Touretzky and R. P. Lippmann (eds.) 977-984, Morgan-Kaufmann.

