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Abstract 
We investigate the use of information from all second order derivatives of the error 
function to perfonn network pruning (i.e., removing unimportant weights from a trained 
network) in order to improve generalization, simplify networks, reduce hardware or 
storage requirements, increase the speed of further training, and in some cases enable rule 
extraction. Our method, Optimal Brain Surgeon (OBS), is Significantly better than 
magnitude-based methods and Optimal Brain Damage [Le Cun, Denker and Sol1a, 1990], 
which often remove the wrong weights. OBS permits the pruning of more weights than 
other methods (for the same error on the training set), and thus yields better 
generalization on test data. Crucial to OBS is a recursion relation for calculating the 
inverse Hessian matrix H-I from training data and structural information of the net. OBS 
permits a 90%, a 76%, and a 62% reduction in weights over backpropagation with weighL 
decay on three benchmark MONK's problems [Thrun et aI., 1991]. Of OBS, Optimal 
Brain Damage, and magnitude-based methods, only OBS deletes the correct weights from 
a trained XOR network in every case. Finally, whereas Sejnowski and Rosenberg [1987J 
used 18,000 weights in their NETtalk network, we used OBS to prune a network to just 
1560 weights, yielding better generalization. 

1 Introduction 
A central problem in machine learning and pattern recognition is to minimize the system complexity 
(description length, VC-dimension, etc.) consistent with the training data. In neural networks this 
regularization problem is often cast as minimizing the number of connection weights. Without such weight 
elimination overfilting problems and thus poor generalization will result. Conversely, if there are too few 
weights, the network might not be able to learn the training data. 

If we begin with a trained network having too many weights, the questions then become: Which weights 
should be eliminated? How should the remaining weights be adjusted for best performance? How can such 
network pruning be done in a computationally efficient way? 
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Magnitude based methods [Hertz, Krogh and Palmer, 1991] eliminate weights that have the smallest 
magnitude. This simple and naively plausible idea unfortunately often leads to the elimination of the wrong 
weights - small weights can be necessary for low error. Optimal Brain Damage [Le Cun, Denker and 
Solla, 1990] uses the criterion of minimal increase in training error for weight elimination. For 
computational simplicity, OBD assumes that the Hessian matrix is diagonal: in fact. however, Hessians for 
every problem we have considered are strongly non-diagonal, and this leads OBD to eliminate the wrong 
weights. The superiority of the method described here - Optimal Brain Surgeon - lies in great pan to the 
fact that it makes no restrictive assumptions about the form of the network's Hessian, and thereby 
eliminates the correct weights. Moreover, unlike other methods, OBS does not demand (typically slow) 
retraining after the pruning of a weight. 

2 Optimal Brain Surgeon 
In deriving our method we begin, as do Le Cun, Denker and Solla [1990], by considering a network trained 
to a local minimum in error. The functional Taylor series of the error with respect to weights (or 
parameters, see below) is: 

(1) 

where H = ;]2 E/ aw2 is the Hessian matrix (containing all second order derivatives) and the superscript 
T denotes vector transpose. For a network trained to a local minimum in error, the first (linear) term 
vanishes: we also ignore the third and all higher order terms. Our goal is then to set one of the weights to 
zero (which we call wq) to minimize the increase in error given by Eq. l. Eliminating Wq is expressed as: 

owq+wq =0 ormoregenerally e~ ·OW+Wq =0 (2) 
where eq is the unit vector in weight space corresponding to (scalar) weight wq• Our goal is then to solve: 

Minq {Mint5w l! OW T . H . ow} such that e~. ow + W q = O} (3) 
To solve Eq. 3 we form a Lagrangian from Eqs. 1 and 2: 

L = 1- ow T . H . ow + A (e~ . ow + W q) (4) 

where A. is a Lagrange undetermined multiplier. We take functional derivatives, employ the constraints of 
Eq. 2, and use matrix inversion to find that the optimal weight change and resulting change in error are: 

w 1 w2 
ow = - q H-1 • e and L = - q (5) 

[H-1] q q 2 [H-1] qq qq 
Note that neither H nor H· I need be diagonal (as is assumed by Le Cun et al.): moreover, our method 
recalculates the magnitude of all the weights in the network, by the left side of Eq. 5. We call Lq the 
"saliency" of weight q - the increase in error that results when the weight is eliminated - a definition 
more general than Le Cun et al. 's, and which includes theirs in the special case of diagonal H. 

Thus we have the following algorithm: 
Optimal Brain Surgeon procedure 

1. Train a "reasonably large" network to minimum error. 
2. Compute H· I . 

3. Find the q that gives the smallest saliency Lq = Wq 2/(2[H· I ]qq). If this candidate error 
increase is much smaller than E, then the qth weight should be deleted, and we 
proceed to step 4; otherwise go to step 5. (Other stopping criteria can be used too.) 

4. Use the q from step 3 to update all weights (Eq. 5). Go to step 2. 
5. No more weights can be deleted without large increase in E. (At this point it may be 

desirable to retrain the network.) 

Figure 1 illustrates the basic idea. The relative magnitudes of the error after pruning (before retraining. if 
any) depend upon the particular problem, but to second order obey: E(mag) ~ E(OBD) ~ E(OBS). which is 
the key to the superiority of OBS. In this example OBS and OBD lead to the elimination of the same 
weight (weight 1). In many cases, however. OBS will eliminate different weights than those eliminated by 
OBD (cf. Sect. 6). We call our method Optimal Brain Surgeon because in addition to deleting weights, it 
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calculates and changes the strengths of other weights without the need for gradient descent or other 
incremental retraining. 

Figure 1: Error as a function of two weights in a 
network. The (local) minimum occurs at weight 
w·, found by gradient descent or other learning 
method. In this illustration, a magnitude based 
pruning technique (mag) then removes the 
smallest weight, weight 2; Optimal Brain 
Damage before retraining (OBD) removes 
weight I. In contrast, our Optimal Brain 
Surgeon method (OBS) not only removes weight 
I, but also automatically adjusts the value of 
weight 2 to minimize the error, without 
retraining. The error surface here is general in 
that it has different curvatures (second 
derivatives) along different directions, a 
minimum at a non-special weight value, and a 
non-diagonal Hessian (i.e., principal axes are not 
parallel to the weight axes). We have found (to 
our surprise) that every problem we have 
investigated has strongly non-diagonal Hessians 
- thereby explaining the improvment of our 
method over that of Le Cun et al. 

3 Computing the inverse Hessian 
The difficulty appears to be step 2 in the OBS procedure, since inverting a matrix of thousands or millions 
of terms seems computationally intractable. In what follows we shall give a general derivation of the 
inverse Hessian for a fully trained neural network. It makes no difference whether it was trained by 
backpropagation, competitive learning, the Boltzmann algorithm, or any other method, so long as 
derivatives can be taken (see below). We shall show that the Hessian can be reduced to the sample 
covariance matrix associated with certain gradient vectors. Furthennore, the gradient vectors necessary for 
OBS are normally available at small computational cost; the covariance form of the Hessian yields a 
recursive formula for computing the inverse. 

Consider a general non-linear neural network that maps an input vector in of dimension nj into an output 
vector 0 of dimension no' according to the following: 

0= F(w,in) (6) 
where w is an n dimensional vector representing the neural network's weights or other parameters. We 
shall refer to w as a weight vector below for simplicity and definiteness, but it must be stressed that w could 
represent any continuous parameters, such as those describing neural transfer function, weight sharing, and 
so on. The mean square error corresponding to the training set is dermed as: 

E = _1 i(t[k] _ o[k]{ (t[k] _ o[k]) 

2P k=1 
(7) 

where P is the number of training patterns, and t lk] and olk] are the desired response and network response 
for the kth training pattern. The first derivative with respect to w is: 

aE = _! i aF(w,in[k) (t[k) _ o[k]) 

(Jw P k=1 dw 
(8) 

and the second derivative or Hessian is: 

a2E 1 P aF(w in[k]) aF(w,in[k]{ 
H=--2 =- L[ , 

dw P k=1 (Jw (Jw 

:l2 • [k] 
(J F(w,m ) . (t[k) _ o[k)] 

(Jw2 
(9) 
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Next we consider a network fully trained to a local minimum in error at w*. Under this condition the 
network response O[k] will be close to the desired response t[k], and hence we neglect the tenn involving 
(t[k]- ork]). Even late in pruning, when this error is not small for a single pattern, this approximation can be 
justified (see next Section). This simplification yields: 

H =! f dF(w,in[k]). dF(w,in[k) T 

p k=1 dw dw 
(10) 

If out network has just a single output, we may define the n-dimensional data vector Xrk] of derivatives as: 

X[k) = dF(w,in[k]) (11) 

aw 
Thus Eq. 10 can be written as: H =! fX[k). X[k]T 

P k=1 
If instead our network has mUltiple output units, then X will be an n x no matrix of the fonn: 

(12) 

X[k] = dF(w,in[k]) = (dF1(w,in[k]) dFno (W,in[k]» [kJ [k] 
aw aw ..... aw = (Xl •...• Xno) (13) 

where F j is the ith component of F. Hence in this multiple output unit case Eq. 10 generalizes to: 

H =! f rx~k). X~k]T (14) 
P k=ll=1 

Equations 12 and 14 show that H is the sample covariance matrix associated with the gradient variable X. 
Equation 12 also shows that for the single output case we can calculate the full Hessian by sequentially 
adding in successive "component" Hessians as: 

H - H + .!.X[m+I]. X[m+l]T with HO = aI and Hp = H (15) 
m+l- m P 

But Optimal Brain Surgeon requires the inverse of H (Eq. 5). This inverse can be calculated using a 
standard matrix inversion fonnula [Kailath, 1980]: 

(A + 8 . C . 0)-1 = A-I - A-I. 8 . (C- I + D. A-I. 8)-1 . D . A-I (16) 
applied to each tenn in the analogous sequence in Eq. 16: 

H-1 . X[m+1) . X[m+1)T . H-I 
H- I - H-I - m m with HOi = a-II and Hpl = H-I 

m+1 - m p + x[m+I)T . H-I . X[m+lI 
m 

(17) 

and a (l0·8 S a S 10-4) a small constant needed to make HO•I meaningful , and to which our method is 
insensitive [Hassibi, Stork and Wolff, 1993b]. Actually, Eq. 17 leads to the calculation of the inverse of 
(H + ciI), and this corresponds to the introduction of a penalty term allliwll2 in Eq. 4. This has the benefit 
of penalizing large candidate jumps in weight space, and thus helping to insure that the neglecting of higher 
order Lenns in Eq. 1 is valid. 

Equation 17 permits the calculation of H· I using a single sequential pass through the training data 
1 S m S P. It is also straightforward to generalize Eq. 18 to the multiple output case of Eq. 15: in this case 
Eq. 15 will have recursions on both the indices m and I giving: 

H - H 1 x[m) X[m)T 
m 1+1 - ml + - 1+1' 1+1 

P 

H = H + ! x[m+1) . X[m+I]T 
m+11 milo P 1 I 

(18) 

To sequentially calculate U- I for the multiple output case, we use Eq. 16, as before. 

4 The (t - 0) ~ 0 approximation 
The approximation used for Eq. 10 can be justified on computational and functional grounds, even late in 
pruning when the training error is not negligible. From the computational view, we note [rrst that nonnally 
H is degenerate - especially before significant pruning has been done - and its inverse not well defined. 
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The approximation guarantees that there are no singularities in the calculation of H-1• It also keeps the 
computational complexity of calculating H-1 the same as that for calculating H - O(p n2). In Statistics the 
approximation is the basis of Fisher's method of scoring and its goal is to replace the true Hessian with its 
expected value and guarantee that H is positive definite (thereby avoiding stability problems that can 
plague Gauss-Newton methods) [Seber and Wild, 1989]. 
Equally important are the functional justifications of the approximation. Consider a high capactiy network 
trained to small training error. We can consider the network structure as involving both signal and noise. 
As we prune, we hope to eliminate those weights that lead to "overfilting," i.e., learning the noise. If our 
pruning method did not employ the (t - 0) ~ 0 approximation, every pruning step (Eqs. 9 and 5) would 
inject the noise back into the system, by penalizing for noise tenns. A different way to think of the 
approximation is the following. After some pruning by OBS we have reached a new weight vector that is a 
local minimum of the error (cf. Fig. 1). Even if this error is not negligible, we want to stay as close to that 
value of the error as we can. Thus we imagine a new, effective teaching signal t*, that would keep the 
network near this new error minimum. It is then (t* - 0) that we in effect set to zero when using Eq. 10 
instead of Eq. 9. 

5 aBS and back propagation 
Using the standard tennino)ogy from backpropagation [Rumelhart, Hinton and Williams, 1986J and the 
single output network of Fig. 2, it is straightforward to show from Eq. 11 that the derivative vectors are: 

[k] - (x~]J X - [k] (19) 
Xu 

where (20) 

refers to derivatives with respect to hidden-to-output weights Vj and 

[X~.t)]T = (f' (net[.t)f (net\.t)v\.t)o~!L .... f' (net[.t)f (net\.t)v~.t)o~~) ... . , 

(21) 
f (net[.t)f' (net~.t)v~~)o\.t) ..... f (net(.t)f (net~.t.)V~.t.)o~~l) 

J J J J I 

refers to derivatives with respect to input-to-hidden weights uji' and where lexicographical ordering has 
been used. The neuron nonlinearity is f(·). 

6 

output 

hidden 

input i = n· 1 

Figure 2: Backpropagation net with lli inputs and nj hidden units. The input-to-hidden 
weights are Uji and hidden-to-output weights Vj. The derivative ("data") vectors are Xv 
and Xu (Eqs. 20 and 21). 

Simulation results 
We applied OBS, Optimal Brain Damage, and a magnitude based pruning method to the 2-2-1 network 
with bias unit of Fig. 3, trained on all patterns of the XOR problem. The network was first trained to a local 
minimum, which had zero error, and then the three methods were used to prune one weight. As shown,the 
methods deleted different weights. We then trained the original XOR network from different initial 
conditions, thereby leading to a different local minima. Whereas there were some cases in which OBD or 
magnitude methods deleted the correct weight, only OBS deleted the correct weight in every case. 
Moreover, OBS changed the values of the remaining weights (Eq.5) to achieve perfect perfonnance 
without any retraining by the backpropagation algorithm. Figure 4 shows the Hessian of the trained but 
unpruned XOR network. 
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Figure 3: A nine weight XOR network trained 
to a local minimum. The thickness of the lines 
indicates the weight magnitudes, and inhibitory 
weights are shown dashed. Subsequent pruning 
using a magnitude based method (Mag) would 
delete weight v3; using Optimal Brain Damage 
(OBD) would delete U22. Even with retraining, 
the network pruned by those methods cannot 
learn the XOR problem. In contrast, Optimal 
Brain Surgeon (OBS) deletes U23 and furthennore 
changed all other weights (cf. Eq. 5) to achieve 
zero error on the XOR problem. 

Figure 4: The Hessian of the trained but 
unpruned XOR network, calculated by means of 
Eq. 12. White represents large values and black 
small magnitudes. The rows and columns are 
labeled by the weights shown in Fig. 3. As is to 
be expected, the hidden-to-output weights have 
significant Hessian components. Note especially 
that the Hessian is far from being diagonal. The 
Hessians for all problems we have investigated, 
including the MONK's problems (below), are far 
from being diagonal. 

VI v2 v3 UII Ul2 u13 u21 u22 U23 

Figure 5 shows two-dimensional "slices" of the nine-dimensional error surface in the neighborhood of a 
local minimum at w· for the XOR network. The cuts compare the weight elimination of Magnitude 
methods (left) and OBD (right) with the elimination and weight adjustment given by OBS. 

E 

U23 
o 

-1 

-2 

V3 u22 
Figure 5: (Left) the XOR error surface as a function of weights V3 and U23 (cf. Fig. 4). A 
magnitude based pruning method would delete weight V3 whereas OBS deletes U23. 
(Right) The XOR error surface as a function of weights U22 and U23. Optimal Brain 
Damage would delete U22 whereas OBS deletes U23. For this minimum, only deleting U23 
will allow the pruned network to solve the XOR problem. 

E 
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After all network weights are updated by Eq. 5 the system is at zero error (not shown). It is especially 
noteworthy that in neither case of pruning by magnitude methods nor Optimal Brain Damage will further 
retraining by gradient descent reduce the training error to zero. In short, magnitude methods and Optimal 
Brain Damage delete the wrong weights, and their mistake cannot be overcome by further network training. 
Only Optimal Brain Surgeon deletes the correct weight. 

We also applied OBS to larger problems, three MONK's problems, and compared our results to those of 
Thrun et al. [1991], whose backpropagation network outperformed all other approaches (network and rule­
based) on these benchmark problems in an extensive machine learning competition. 

Accuracy 
training testing # weights 

MONKl BPWD 100 100 58 

aBS 100 100 14 

MONK 2 
BPWD 100 100 39 

aBS 100 100 15 

BPWD 93.4 97.2 39 
aBS 93.4 97.2 4 MONK 3 

Table 1: The accuracy and number of weights found by backpropagation with weight 
decay (BPWD) found by Thrun etal. [1991], and by OBS on three MONK's problems. 

Table I shows that for the same perfonnance, OBS (without retraining) required only 24%, 38% and 10% 
of the weights of the backpropagation network, which was already regularized with weight decay (Fig. 6). 
The error increaseL (Eq. 5) accompanying pruning by OBS negligibly affected accuracy. 

", .' .... .... , 
_- I. l-..... .-'...... . .... 

Figure 6: Optimal networks found by Thrun using backpropagation with weight decay 
(Left) and by OBS (Right) on MONK I, which is based on logical rules. Solid (dashed) 
lines denote excitatory (inhibitory) connections; bias units are at left. 

The dramatic reduction in weights achieved by OBS yields a network that is simple enough that the logical 
rules that generated the data can be recovered from the pruned network, for instance by the methods of 
Towell and Shavlik [1992]. Hence OBS may help to address a criticism often levied at neural networks: 
the fact that they may be unintelligible. 

We applied OBS to a three-layer NETtalk network. While Sejnowski and Rosenberg [1987] used 18,000 
weights, we began with just 5546 weights, which after backpropagation training had a test error of 5259. 
After pruning this net with OBS to 2438 weights, and then retraining and pruning again, we achieved a net 
with only 1560 weights and test error of only 4701 - a significant improvement over the original, more 
complex network [Hassibi, Stork and Wolff, 1993a]. Thus OBS can be applied to real-world pattern 
recognition problems such as speech recognition and optical character recognition, which typically have 
several thousand parameters. 

7 Analysis and conclusions 
Why is Optimal Brain Surgeon so successful at reducing excess degrees of freedom? Conversely, given 
this new standard in weight elimination, we can ask: Why are magnitude based methods so poor? 
Consider again Fig. 1. Starting from the local minimum at w·, a magnitude based method deletes the 
wrong weight, weight 2, and through retraining, weight 1 will increase. The final "solution" is 
weight 1 4 large, weight 2 = O. This is precisely the opposite of the solution found by OBS: weight 1 = 0, 
weight 2 4 large. Although the actual difference in error shown in Fig. 1 may be small, in large networks, 
differences from many incorrect weight elimination decisions can add up to a significant increase in error. 
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But most importantly, it is simply wishful thinking to believe that after the elimination of many incorrect 
weights by magnitude methods the net can "sort it all out" through further training and reach a global 
optimum, especially if the network has already been pruned significantly (cf. XOR discussion, above). 

We have also seen how the approximation employed by Optimal Brain Damage - that the diagonals of the 
Hessian are dominant - does not hold for the problems we have investigated. There are typically many 
off-diagonal terms that are comparable to their diagonal counterparts. This explains why OBD often 
deletes the wrong weight, while OBS deletes the correct one. 

We note too that our method is quite general, and subsumes previous methods for weight elimination. In 
our terminology, magnitude based methods assume isotropic Hessian (H ex I); OBD assumes diagonal H: 
FARM [Kung and Hu, 1991] assumes linear f(net) and only updates the hidden-to-output weights. We 
have shown that none of those assumptions are valid nor sufficient for optimal weight elimination. 

We should also point out that our method is even more general than presented here [Hassibi, Stork and 
Wotff, 1993bl. For instance, rather than pruning a weight (parameter) by setting it to zero, one can instead 
reduce a degree of freedom by projecting onto an arbitrary plane, e.g., Wq = a constant, though such 
networks typically have a large description length [Rissanen, 1978]. The pruning constraint w q = 0 
discussed throughout this paper makes retraining (if desired) particularly simple. Several weights can be 
deleted simultaneously; bias weights can be exempt from pruning, and so forth. A slight generalization of 
OBS employs cross-entropy or the Kullback-Leibler error measure, leading to Fisher Infonnation matrix 
rather than the Hessian (Hassibi, Stork and Wolff, 1993b). We note too that OBS does not by itself give a 
criterion for when to stop pruning, and thus OBS can be utilized with a wide variety of such criteria. 
Moreover, gradual methods such as weight decay during learning can be used in conjunction with OBS. 
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