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Abstract 

The classical computational model for stereo vision incorporates 
a uniqueness inhibition constraint to enforce a one-to-one feature 
match, thereby sacrificing the ability to handle transparency. Crit­
ics of the model disregard the uniqueness constraint and argue 
that the smoothness constraint can provide the excitation support 
required for transparency computation. However, this modifica­
tion fails in neighborhoods with sparse features. We propose a 
Bayesian approach to stereo vision with priors favoring cohesive 
over transparent surfaces. The disparity and its segmentation into a 
multi-layer "depth planes" representation are simultaneously com­
puted. The smoothness constraint propagates support within each 
layer, providing mutual excitation for non-neighboring transparent 
or partially occluded regions. Test results for various random-dot 
and other stereograms are presented. 

1 INTRODUCTION 

The horizontal disparity in the projection of a 3-D point in a parallel stereo imag­
ing system can be used to compute depth through triangulation. As the number of 
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points in the scene increases, the correspondence problem increases in complexity 
due to the matching ambiguity. Prior constraints on surfaces are needed to arrive 
at a correct solution. Marr and Poggio [1976] use the smoothness constraint to re­
solve matching ambiguity and the uniqueness constraint to enforce a 1-to-1 match. 
Their smoothness constraint tends to oversmooth at occluding boundaries and their 
uniqueness assumption discourages the computation of stereo transparency for two 
overlaid surfaces. Prazdny [1985] disregards the uniqueness inhibition term to en­
able transparency perception. However, their smoothness constraint is locally en­
forced and fails at providing excitation for spatially disjoint regions and for sparse 
transparency. 

More recently, Bayesian approaches have been used to incorporate prior constraints 
(see [Clark and Yuille, 1990] for a review) for stereopsis while overcoming the prob­
lem of oversmoothing. Line processes are activated for disparity discontinuities to 
mark the smoothness boundaries while the disparity is simultaneously computed. 
A drawback of such methods is the lack of an explicit grouping of image sites 
into piece-wise smooth regions. In addition, when presented with a stereogram of 
overlaid (transparent) surfaces such as in the random-dot stereogram in figure 5, 
multiple edges in the image are obtained while we clearly perceive two distinct, 
overlaid surfaces. With edges as output, further grouping of overlapping surfaces 
is impossible using the edges as boundaries. This suggests that surface grouping 
should be performed simultaneously with disparity computation. 

2 THE MULTI-LAYER REPRESENTATION 

We propose a Bayesian approach to computing disparity and its segmentation that 
uses a different output representation from the previous, edge-based methods. Our 
representation was inspired by the observations of Nakayama et al. [1989] that mid­
level processing such as the grouping of objects behind occluders is performed for 
objects within the same "depth plane" . 

As an example consider the stereogram of a floating square shown in figure 1a. The 
edge-based segmentation method computes the disparity and marks the disparity 
edges as shown in figure lb. Our approach produces two types of output at each 
pixel: a layer (depth plane) number and a disparity value for that layer. The goal 
of the system is to place points that could have arisen from a single smooth surface 
in the scene into one distinct layer. The output for our multi-surface representation 
is shown in figure 1c. Note that the floating square has a unique layer label, namely 
layer 4, and the background has another label of 2. Layers 1 and 3 have no data 
support and are, therefore, inactive. 

The rest of the pixels in each layer that have no data support obtain values by a 
membrane fitting process using the computed disparity as anchors. The occluded 
parts of surfaces are, thus, represented in each layer. In addition, disjoint regions of a 
single surface due to occlusion are represented in a single layer. This representation 
of occluded parts is an important difference between our representation and a similar 
representation for segmentation by Darrell and Pentland [1991]. 
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Figure I: a) A gray scale 
display of a noisy stereo­
gram depicting a floating 
square. b. Edge based 

disp. = 0 method: disparity com­
puted and disparity discon­
tinuity computed. c. Multi­
Surface method: disparity 
computed, surface grouping 

. performed by layer assign-
dlsp. = 4 d d' . f h ment. an lspanty or eac 

layer filled in. 

ALGORITHM AND SIMULATION METHOD 

We use Bayes' [1783] rule to compute the scene attribute, namely disparity u and 
its layer assignment 1 for each layer: 

( IldL dR) = p(dL,dRlu, I)p(u, I) 
p u,' p( dL , dR ) 

where dL and dR are the left and right intensity image data. Each constraint is ex­
pressed as a local cost function using the Markov Random Field (MRF) assumption 
lGeman and Geman, 1984], that pixels values are conditional only on their nearest 
neighbors. Using the Gibbs-MRF equivalence, the energy function can be written 
as a probability function: 

1 E(.,) 
p(x) = -e-"­

Z 
where Z is the normalizing constant, T is the temperature, E is the energy cost 
function, and x is a random variable 

Our energy constraints can be expressed as 

E = >'D VD + >'s Vs + >'G VG + >'E VE + AR VR 

where the>. 's are the weighting factors and the VD, Vs, VG, VE, VR functions are 
the data matching cost, the smoothness term, the gap term, the edge shape term, 
and the disparity versus intensity edge coupling term, respectively. 

The data matching constraint prefers matches with similar intensity and contrast: 

VD = t [Idr - dfl +.., .2: I(df - dr) - (d~ - df)l] 
, JENi 

with the image indices k and m given by the ordered pairs k = (row(i), col(i)+uC,i), 
m = (row(j) , col(j) + UCii), M is the number of pixels in the image, Ci is the layer 
classification for site i, and Uli is the disparity at layer I. The.., weighs absolute 
intensity versus contrast matching. 

The >'D is higher for points that belong to unambiguous features such as straight 
vertical contours, so that ambiguous pixels rely more on their prior constraints. 
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Figure 2: Cost function V s. a) The smoothness cost is quadratic until the disparity differ­

ence is high and an edge process is activated. b) In our simulations we use a threshold 

below which the smoothness cost is scaled down and above which a different layer 

assignment is accepted at a constant high cost. 

Also, if neighboring pixels have a higher disparity than the current pixel and are in 
a different layer, its )..D is lowered since its corresponding point in the left image is 
likely to be occluded. 

The equation for the smoothness term is given by: 

M L 

Vs = LL L V,(uu, U'j)a, 
i 1 jEN. 

where, Ni are the neighbors of i, V, is the local smoothness potential, a, is the 
activity level for layer I defined by the percent of pixels belonging to layer I, and L 
is the number layers in the system. The local smoothness potential is given by: 

if (a - b)2 < Tn 
otherwise 

where JJ is the weighting term between depth smoothness and directional derivative 
smoothness. The ~k is the difference operation in various directions k, and T 
is the threshold. Instead of the commonly used quadratic smoothness function 
graphed in figure 2a, we use the (7 function graphed in figure 2b which resembles 
the Ising potential. This allows for some flexibility since )..5 is set rather high in 
our simulations. 

The VG term ensures a gap in the values of corresponding pixels between layers: 

This ensures that if a site i belongs to layer C., then all points j neighboring i for 
each layer 1 must have different disparity values ulj than uCia' 

The edge or boundary shape constraint VE incorporates two types of constraints: 
a cohesive measure and a saliency measure. The costs for various neighborhood 
configurations are given in figure 3. 

The constraint VR ensures that if there is no edge in intensity then there should be 
no edge in the disparity. This is particularly important to avoid local minima for 
gray scale images since there is so much ambiguity in the matching. 
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• - same layer label 

D -different layer label 
cost = 0 cost = 0.2 cost = 0.25 cost == 0.5 cost == 0.7 cost == I 

Figure 3: Cost function VE. The costs associated nearest neighborhood layer label con­
~gurations. a) Fully cohesive region (lowest cost) b) Two opaque regions with straight 
hne boundary. c) Two opaque regions with diagonal line boundary. d) Opaque regions 
with no figural continuity. e) Transparent region with dense samplings. f) Transparent 
region with no other neighbors (highest cost). 

Layer 3 

layer labels 

Wire-frame plot of Layer 3 

Figure 4: Stereogram of floating cyl­
inder shown in crossed and uncrossed 
disparity. Only disparity values in the 
active layers are shown. A wire­
frame rendering for layer 3 which 
captures the cylinder is shown. 

The Gibbs Sampler [Geman and Geman, 1984] with simulated annealing is used 
to compute the disparity and layer assignments. After each iteration of the Gibbs 
Sampler, the missing values within each layer are filled-in using the disparity at the 
available sites. A quadratic energy functional enforces smoothness of disparity and 
of disparity difference in various directions. A gradient descent approach minimizes 
this energy and the missing values are filled-in. 

4 SIMULATION RESULTS 

After normalizing each of the local costs to lie between 0 and 1, the values for the 
weighting parameters used in decreasing order are: .As, .AR, .AD, .AE,.AG with the .AD 
value moved to follow .AG if a pixel is partially occluded. The results for a random­
dot stereogram with a floating half-cylinder are shown in figure 4. Note that for 
clarity only the visible pixels within each layer are displayed, though the remaining 
pixels are filled-in. A wire-frame rendering for layer 3 is also provided. 

Figure 5 is a random-dot stereogram with features from two transparent fronto­
parallel surfaces. The output consists primarily of two labels corresponding to 
the foreground and the background. Note that when the stereogram is fused, the 
percept is of two overlaid surfaces with various small, noisy regions of incorrect 
matches. 

Figure 6 is a random-dot stereogram depicting many planar-parallel surfaces. Note 
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Figure 5: Random-dot ste­
reogram of two overlaid 
surfaces. Layers 1 and 4 
are the mostly activated 
layers. Only 5 of the layers 
are shown here. -
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Figure 6: Random-dot stereogram of 
multiple flat surfaces. Layers 4 captures 
two regions since they belong to the 
same surface (equal disparity). 
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that there are two disjoint regions which are classified into the same layer since they 
form a single surface. 

A gray-scale stereogram depicting a floating square occluding the letter 'C' also 
floating above the background is shown in figure 7. A feature-based matching 
scheme is bound to fail here since locally one cannot correctly attribute the com­
puted disparity at a matched corner of the rectangle, for example, to either the 
rectangle, the background, or to both regions. Our VR constraint forces the system 
to attempt various matches until points with no intensity discontinuity have no 
disparity discontinuity. Another important feature is that the two ends of the letter 
'C' are in the same "depth plane" [Nakayama et al., 1989] and may later be merged 
to complete the letter. 

Figure 8 is a gray scale stereogram depicting 4 distant surfaces with planar disparity. 
At occluding boundaries, the region corresponding to the further surface in the right 
image has no corresponding region in the left image. A high .AD would only force 
these points to find an incorrect match and add to the systems errors. The.AD 
reduction factor for partially occluded points reduces the data matching requirement 
for such points. This is crucial for obtaining correct matches especially since the 
images are sparsely textured and the dependence on accurate information from the 
textured regions is high. 

A transparency example of a fence in front a bill-board is given in figure 9. Note 


