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Abstract 

Typical methods for gradient descent in neural network learning involve 
calculation of derivatives based on a detailed knowledge of the network 
model. This requires extensive, time consuming calculations for each pat­
tern presentation and high precision that makes it difficult to implement 
in VLSI. We present here a perturbation technique that measures, not 
calculates, the gradient. Since the technique uses the actual network as 
a measuring device, errors in modeling neuron activation and synaptic 
weights do not cause errors in gradient descent. The method is parallel 
in nature and easy to implement in VLSI. We describe the theory of such 
an algorithm, an analysis of its domain of applicability, some simulations 
using it and an outline of a hardware implementation. 

1 Introduction 

The most popular method for neural network learning is back-propagation (Rumel­
hart, 1986) and related algorithms that calculate gradients based on detailed knowl­
edge of the neural network model. These methods involve calculating exact values 
of the derivative of the activation function. For analog VLSI implementations, such 
techniques require impossibly high precision in the synaptic weights and precise 
modeling of the activation functions. It is much more appealing to measure rather 
than calculate the gradient for analog VLSI implementation by perturbing either a 
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single weight (Jabri, 1991) or a single neuron (Widrow, 1990) and measuring the 
resulting change in the output error. However, perturbing only a single weight or 
neuron at a time loses one of the main advantages of implementing neural networks 
in analog VLSI, namely, that of computing weight changes in parallel. The one­
weight-at-a-time perturbation method has the same order of time complexity as a 
serial computer simulation of learning. A mathematical analysis of the possibility 
of model free learning using parallel weight perturbations followed by local corre­
lations suggests that random perturbations by additive, zero-mean, independent 
noi~e sources may provide a means of parallel learning (Dembo, 1990). We have 
pre :Tiously used such a noise source (Alspector, 1991) in a different implement able 
learning model. 

2 Gradient Estimation by Parallel Weight Perturbation 

2.1 A Brownian Motion Algorithm 

One can estimate the gradient of the error E(w) with respect to any weight WI 

by perturbing WI by OWl and measuring the change in the output error oE as the 
entire weight vector w except for component Wl is held constant. 

E(w + OWl) - E(w) 
OWl 

This leads to an approximation to the true gradient g:l: 

oE oE - = - + O([owd) 
OWl OWl 

(1) 

(2) 

For small perturbations, the second (and higher order) term can be ignored. This 
method of perturbing weights one-at-a-time has the advantage of using the correct 
physical neurons and synapses in a VLSI implementation but has time complexity 
of O(W) where W is the number of weights. 

Following (Dembo, 1990), let us now consider perturbing all weights simultaneously. 
However, we wish to have the perturbation vector ow chosen uniformly on a hyper­
cube. Note that this requires only a random sign multiplying a fixed perturbation 
and is natural for VLSI. Dividing the resulting change in error by any single weight 
change, say OWl, gives 

oE 
OWl 

which by a Taylor expansion is 

E(w + ow) - E(w) 
OWl 

leading to the approximation (ignoring higher order terms) 

(3) 

(4) 
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(5) 

An important point of this paper, emphasized by (Dembo, 1990) and embodied in 
Eq. (5), is that the last term has expectation value zero for random and indepen­
dently distributed OWi since the last expression in parentheses is equally likely to 
be +1 as -1. Thus, one can approximately follow the gradient by perturbing all 
weights at the same time. If each synapse has access to information about the re­
sulting change in error, it can adjust its weight by assuming it was the only weight 
perturbed. The weight change rule 

(6) 

where TJ is a learning rate, will follow the gradient on the average but with the 
considerable noise implied by the second term in Eq. (5). This type of stochas­
tic gradient descent is similar to the random-direction Kiefer-Wolfowitz method 
(Kushner, 1978), which can be shown to converge under suitable conditions on TJ 
and OWi. This is also reminiscent of Brownian motion where, although particles may 
be subject to considerable random motion, there is a general drift of the ensemble 
of particles in the direction of even a weak external force. In this respect, there is 
some similarity to the directed drift algorithm of (Venkatesh, 1991), although that 
work applies to binary weights and single layer perceptrons whereas this algorithm 
should work for any level of weight quantization or precision - an important ad­
vantage for VLSI implementations - as well as any number of layers and even for 
recurrent networks. 

2.2 Improving the Estimate by Multiple Perturbations 

As was pointed out by (Dembo, 1990), for each pattern, one can reduce the variance 
of the noise term in Eq. (5) by repeating the random parallel perturbation many 
times to improve the statistical estimate. If we average over P perturbations, we 
have 

oE 1 p oE 8E 1 P W (EJE) (owf) 
OWl = P L oif.l = 8Wl + P L ?= 8Wi OwPl p=l p=l&>l 

(7) 

where p indexes the perturbation number. The variance of the second term, which . . . 
IS a nOise, v, IS 

I 

where the expectation value, <>, leads to the Kronecker delta function, off, . This 
reduces Eq. (8) to 
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2 1 P W (OE)2 
< II > = p2 LL OW. 

p=li>l z 

(9) 

The double sum over perturbations and weights (assuming the gradient is bounded 
and all gradient directions have the same order of magnitude) has magnitude 
O(PW) so that the variance is O(~) and the standard deviation is 

(10) 

Therefore, for a fixed variance in the noise term, it may be necessary to have a 
number of perturbations of the same order as the number of weights. So, if a 
high precision estimate of the gradient is needed throughout learning, it seems as 
though the time complexity will still be O(W) giving no advantage over single 
perturbations. However, one or a few of the gradient derivatives may dominate 
the noise and reduce the effective number of parameters. One can also make a 
qualitative argument that early in learning, one does not need a precise estimate of 
the gradient since a general direction in weight space will suffice. Later, it will be 
necessary to make a more precise estimate for learning to converge. 

2.3 The Gibbs Distribution and the Learning Problem 

Note that the noise of Eq. (7) is gaussian since it is composed of a sum of random 
sign terms which leads to a binomial distribution and is gaussian distributed for 
large P. Thus, in the continuous time limit, the learning problem has Langevin 
dynamics such that the time rate of change of a weight Wk is, 

(11) 

and the learning problem converges in probability (Zinn-Justin, 1989), so that 
as~mpto~ically Pr(w) <X exp[-,BE(w)] where ,B is inversely proportional to the 
nOIse vanance. 

Therefore, even though the gradient is noisy, one can still get a useful learning algo­
rithm. Note that we can "anneal" Ilk by a variable perturbation method. Depending 
on the annealing schedule, this can result in a substantial speedup in learning over 
the one-weight-at-a-time perturbation technique. 

2.4 Similar Work in these Proceedings 

Coincidentally, there were three other papers with similar work at NIPS*92. This 
algorithm was presented with different approaches by both (Flower, 1993) and 
(Cauwenberghs, 1993). 1 A continuous time version was implemented in VLSI 
but not on a neural network by (Kirk, 1993). 

1 We note that (Cauwenberghs, 1993) shows that multiple perturbations are no t needed for learning 
if D.w is small enough and he does not study them . This does not agree with our simulations (following) 
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3 Simulations 

3.1 Learning with Various Perturbation Iterations 

We tried some simple problems using this technique in software. We used a standard 
sigmoid activation function with unit gain, a fixed size perturbation of .005 and 
random sign. The learning rate, T/, was .1 and momentum, Q, was o. We varied 
the number of perturbation iterations per pattern presentation from 1 to 128 (21 
where 1 varies from 0 to 7). We performed 10 runs for each condition and averaged 
the results. Fig. 1a shows the average learning curves for a 6 input, 12 hidden, 1 
output unit parity problem as the number of perturbations per pattern presentation 
is varied. The symbol plotted is l. 
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Figure 1. Learning curves for 6-12-1 parity and 6-6-6 replication . 

There seems to be a critical number of perturbations, Pc, about 16 (1 = 4) in this 
case, below which learning slows dramatically. 

We repeated the measurements of Fig. 1a for different sizes of the parity problem 
using a N-2N-1 network. We also did these measurements on a different problem, 
replication or identity, where the task is to replicate the bit pattern of the input on 
the output. We used a N-N-N network for this task so that we have a comparison 
with the parity problem as N varies for roughly the same number of weights (2N 2 + 
2N) in each network. The learning curves for the 6-6-6 problem are plotted in Fig. 
lb. The critical value also seems to be 16 (l = 4). 

p erhaps b ecause we do not d ecrease 6w and 11 as learning proceeds. He did not check this for large 
problems as we did. In an implementation, one will not be able to reduce 6w too much so that the effect 
on the output error can be measur ed. It is also likely that multiple perturbations can be done more 
quickly than multiple pattern presentations, if learning speed is an issue. He also notes the importance 
of correlating with the change in error rather than the error alone as in (Dembo, 1990) . 
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3.2 Scaling of the Critical Value with Problem Size 

To determine how the critical value of perturbation iterations scales, we tried a 
variety of problems besides the N-N-N replication and N-2N-1 parity. We added N-
2N-N replication and N-N-1 parity to see how more weights affect the same problem. 
We also did N-N-N /2 edge counting, where the output is the number of sign changes 
in an ordered row of N inputs. Finally we did N-2N-N and N-N-N hamming where 
the output is the closest hamming code for N inputs. We varied the number of 
perturbation iterations so that p = 1,2,5,10,20,50,100,200,400. 

Edge N-N-N/2 
Parity N-2N-1 

i i 
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lOll - ... ... , .... "'" ... .., ... , .... -- --~ ~ 

i i Hamming N-2N-N 
Replication N-2N-N 

~ ~ 

10) .tOO 100 100 '000 200 .00 100 eoo '000 -- --
Figure 2. Critical value scaling for different problems. 

Fig. 2 gives a feel for the effective scale of the problem by plotting the critical value 
of the number of perturbation iterations as a function of the number of weights for 
some of the problems we looked at. Note that the required number of iterations is 
not a steep function of the network size except for the parity problem. We speculate 
that the scaling properties are dependent on the shape of the error surface. If the 
derivatives in Eq. 9 are large in all dimensions (learning on a bowl-shaped surface), 
then the effective number of parameters is large and the variance of the noise term 
will be on the order of the number of weights, leading to a steep dependence in 
Fig. 2. If, however, there are only a few weight directions with significantly large 
error derivatives (learning on a taco shell), then the noise will scale at a slower 
rate than the number of weights leading to a weak dependence of the critical value 
with problem size. This is actually a nice feature of parallel perturbative learning 
because it means learning will be noisy and slow in a bowl where it's easy, but 
precise and fast in a taco shell where it's hard. 

The critical value is required for convergence at the end of learning but not at 
the start. This means it should be possible to anneal the number of perturbation 
iterations to achieve an additional speedup over the one-weight-at-a-time perturba-
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tion technique. We would also like to understand how to vary bw and 11 as learning 
proceeds. The stochastic approximation literature is likely to serve as a useful guide. 

3.3 Computational Geometry of Stochastic Gradient Descent 

error 
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'" o 
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Figure 3. Computational Geometry of Stochastic Gradient Descent. 

Fig. 3a shows some relevant gradient vectors and angles in the learning problem. 
For a particular pattern presentation, the true gradient, gb, from a back-propagation 
calculation is compared with the one-weight-at-a-time gradient, go, from a pertur­
bation, bWi , in one weight direction. The gradient from perturbing all weights, gm, 
adds a noise vector to go. By taking the normalized dot product between gm and 
gb, one obtains the direction cosine between the estimated and the true gradient 
direction. This is plotted in Fig. 3b for the 10 input N-N-l parity problem for all 
nine perturbation values. The shaded bands increase in cos (decrease in angle) as 
the number of perturbations goes from 1 to 400. Note that the angles are large 
but that learning still takes place. Note also that the dot product is almost always 
positive except for a few points at low perturbation numbers. Incidentally, by look­
ing at plots of the true to one-weight-at-a-time angles (not shown), we see that the 
large angles are due almost entirely to the parallel perturbative noise term and not 
to the stepsize, bw. 

4 Outline of an analog implementation 

Fig. 4 shows a diagram of a learning synapse using this perturbation technique. 
Note that its only inputs are a single bit representing the sign of the perturbation 
and a broadcast signal representing the change in the output error. Multiple per­
turbations can be averaged by the summing buffer and weight is stored as charge 
on a capacitor or floating gate device. 
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An estimate of the power and area of an analog chip implementation gives the 
following: Using a standard 1.2J,.tm, double poly technology, the synapse with about 
7 to 8 bits ofresolution and which includes a 0.5 pf storage capacitor, weight refresh 
(Hochet, 1989) and update circuitry can be fabricated with an area of about 1600 
J,.tm2 and with a power dissipation of about 100 J,.t W with continuous self-refresh. 
This translates into a chip of about 22000 synapses at 2.2 watts on a 36 mm2 die 
core. It is likely that the power requirements can be greatly reduced with a more 
relaxed refresh technique or with a suitable non-volatile analog storage technology. 
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Figure 4. Diagram of perturbative learning synapse. 

We intend to use our noise generation technique (Alspector, 1991) to provide un­
correlated perturbations potentially to thousands of synapses. Note also that the 
error signal can be generated by a simple resistor or a comparator followed by a 
summer. The difference signal can be generated by a simple differentiator. 

5 Conclusion 

We have analyzed a parallel perturbative learning technique and shown that it 
should converge under the proper conditions. We have performed simulations on 
a variety of test problems to demonstrate the scaling behavior of this learning 
algorithm. We are continuing work to understand speedups possible in an analog 
VLSI implementation. Finally, we describe such an implementation. Future work 
will involve applying this technique to learning in recurrent networks. 
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