
A Parallel Gradient Descent Method for Learning
in Analog VLSI Neural Networks

J. Alspector R. Meir'" B. Yuhas A. Jayakumar D. Lippet
Bellcore

Morristown, NJ 07962-1910

Abstract

Typical methods for gradient descent in neural network learning involve
calculation of derivatives based on a detailed knowledge of the network
model. This requires extensive, time consuming calculations for each pat­
tern presentation and high precision that makes it difficult to implement
in VLSI. We present here a perturbation technique that measures, not
calculates, the gradient. Since the technique uses the actual network as
a measuring device, errors in modeling neuron activation and synaptic
weights do not cause errors in gradient descent. The method is parallel
in nature and easy to implement in VLSI. We describe the theory of such
an algorithm, an analysis of its domain of applicability, some simulations
using it and an outline of a hardware implementation.

1 Introduction

The most popular method for neural network learning is back-propagation (Rumel­
hart, 1986) and related algorithms that calculate gradients based on detailed knowl­
edge of the neural network model. These methods involve calculating exact values
of the derivative of the activation function. For analog VLSI implementations, such
techniques require impossibly high precision in the synaptic weights and precise
modeling of the activation functions. It is much more appealing to measure rather
than calculate the gradient for analog VLSI implementation by perturbing either a

·Present address: Dept. of EE; Technion; Haifa, Israel
tpresent address: Dept. of EE; MIT; Cambridge, MA

836

A Parallel Gradient Descent Method for Learning in Analog VLSI Neural Networks 837

single weight (Jabri, 1991) or a single neuron (Widrow, 1990) and measuring the
resulting change in the output error. However, perturbing only a single weight or
neuron at a time loses one of the main advantages of implementing neural networks
in analog VLSI, namely, that of computing weight changes in parallel. The one­
weight-at-a-time perturbation method has the same order of time complexity as a
serial computer simulation of learning. A mathematical analysis of the possibility
of model free learning using parallel weight perturbations followed by local corre­
lations suggests that random perturbations by additive, zero-mean, independent
noi~e sources may provide a means of parallel learning (Dembo, 1990). We have
pre :Tiously used such a noise source (Alspector, 1991) in a different implement able
learning model.

2 Gradient Estimation by Parallel Weight Perturbation

2.1 A Brownian Motion Algorithm

One can estimate the gradient of the error E(w) with respect to any weight WI

by perturbing WI by OWl and measuring the change in the output error oE as the
entire weight vector w except for component Wl is held constant.

E(w + OWl) - E(w)
OWl

This leads to an approximation to the true gradient g:l:

oE oE - = - + O([owd)
OWl OWl

(1)

(2)

For small perturbations, the second (and higher order) term can be ignored. This
method of perturbing weights one-at-a-time has the advantage of using the correct
physical neurons and synapses in a VLSI implementation but has time complexity
of O(W) where W is the number of weights.

Following (Dembo, 1990), let us now consider perturbing all weights simultaneously.
However, we wish to have the perturbation vector ow chosen uniformly on a hyper­
cube. Note that this requires only a random sign multiplying a fixed perturbation
and is natural for VLSI. Dividing the resulting change in error by any single weight
change, say OWl, gives

oE
OWl

which by a Taylor expansion is

E(w + ow) - E(w)
OWl

leading to the approximation (ignoring higher order terms)

(3)

(4)

838 Alspector, Meir, Yuhas, Jayakumar, and Lippe

(5)

An important point of this paper, emphasized by (Dembo, 1990) and embodied in
Eq. (5), is that the last term has expectation value zero for random and indepen­
dently distributed OWi since the last expression in parentheses is equally likely to
be +1 as -1. Thus, one can approximately follow the gradient by perturbing all
weights at the same time. If each synapse has access to information about the re­
sulting change in error, it can adjust its weight by assuming it was the only weight
perturbed. The weight change rule

(6)

where TJ is a learning rate, will follow the gradient on the average but with the
considerable noise implied by the second term in Eq. (5). This type of stochas­
tic gradient descent is similar to the random-direction Kiefer-Wolfowitz method
(Kushner, 1978), which can be shown to converge under suitable conditions on TJ
and OWi. This is also reminiscent of Brownian motion where, although particles may
be subject to considerable random motion, there is a general drift of the ensemble
of particles in the direction of even a weak external force. In this respect, there is
some similarity to the directed drift algorithm of (Venkatesh, 1991), although that
work applies to binary weights and single layer perceptrons whereas this algorithm
should work for any level of weight quantization or precision - an important ad­
vantage for VLSI implementations - as well as any number of layers and even for
recurrent networks.

2.2 Improving the Estimate by Multiple Perturbations

As was pointed out by (Dembo, 1990), for each pattern, one can reduce the variance
of the noise term in Eq. (5) by repeating the random parallel perturbation many
times to improve the statistical estimate. If we average over P perturbations, we
have

oE 1 p oE 8E 1 P W (EJE) (owf)
OWl = P L oif.l = 8Wl + P L ?= 8Wi OwPl p=l p=l&>l

(7)

where p indexes the perturbation number. The variance of the second term, which . . .
IS a nOise, v, IS

I

where the expectation value, <>, leads to the Kronecker delta function, off, . This
reduces Eq. (8) to

A Parallel Gradient Descent Method for Learning in Analog VLSI Neural Networks 839

2 1 P W (OE)2
< II > = p2 LL OW.

p=li>l z

(9)

The double sum over perturbations and weights (assuming the gradient is bounded
and all gradient directions have the same order of magnitude) has magnitude
O(PW) so that the variance is O(~) and the standard deviation is

(10)

Therefore, for a fixed variance in the noise term, it may be necessary to have a
number of perturbations of the same order as the number of weights. So, if a
high precision estimate of the gradient is needed throughout learning, it seems as
though the time complexity will still be O(W) giving no advantage over single
perturbations. However, one or a few of the gradient derivatives may dominate
the noise and reduce the effective number of parameters. One can also make a
qualitative argument that early in learning, one does not need a precise estimate of
the gradient since a general direction in weight space will suffice. Later, it will be
necessary to make a more precise estimate for learning to converge.

2.3 The Gibbs Distribution and the Learning Problem

Note that the noise of Eq. (7) is gaussian since it is composed of a sum of random
sign terms which leads to a binomial distribution and is gaussian distributed for
large P. Thus, in the continuous time limit, the learning problem has Langevin
dynamics such that the time rate of change of a weight Wk is,

(11)

and the learning problem converges in probability (Zinn-Justin, 1989), so that
as~mpto~ically Pr(w) <X exp[-,BE(w)] where ,B is inversely proportional to the
nOIse vanance.

Therefore, even though the gradient is noisy, one can still get a useful learning algo­
rithm. Note that we can "anneal" Ilk by a variable perturbation method. Depending
on the annealing schedule, this can result in a substantial speedup in learning over
the one-weight-at-a-time perturbation technique.

2.4 Similar Work in these Proceedings

Coincidentally, there were three other papers with similar work at NIPS*92. This
algorithm was presented with different approaches by both (Flower, 1993) and
(Cauwenberghs, 1993). 1 A continuous time version was implemented in VLSI
but not on a neural network by (Kirk, 1993).

1 We note that (Cauwenberghs, 1993) shows that multiple perturbations are no t needed for learning
if D.w is small enough and he does not study them . This does not agree with our simulations (following)

840 Alspector, Meir, Yuhas, Jayakumar, and Lippe

3 Simulations

3.1 Learning with Various Perturbation Iterations

We tried some simple problems using this technique in software. We used a standard
sigmoid activation function with unit gain, a fixed size perturbation of .005 and
random sign. The learning rate, T/, was .1 and momentum, Q, was o. We varied
the number of perturbation iterations per pattern presentation from 1 to 128 (21
where 1 varies from 0 to 7). We performed 10 runs for each condition and averaged
the results. Fig. 1a shows the average learning curves for a 6 input, 12 hidden, 1
output unit parity problem as the number of perturbations per pattern presentation
is varied. The symbol plotted is l.

~ f
I
I
I

pa"ty 6 avg10

----::-1

~------~-------~I-

j
50 100 150

replication 6 avg , 0

7 7 1 7 7 7 7 7 ,. 7 1 7 :lllil • I III ;;:-;-, ~ 1
7

••
7 •

3 3 3 :I

3 3

3
3 3

3 33 3 3 3 3 3

10 15 20

:I 3 33

3 3 3 3

3 3

I
I

~- J
2S

Figure 1. Learning curves for 6-12-1 parity and 6-6-6 replication .

There seems to be a critical number of perturbations, Pc, about 16 (1 = 4) in this
case, below which learning slows dramatically.

We repeated the measurements of Fig. 1a for different sizes of the parity problem
using a N-2N-1 network. We also did these measurements on a different problem,
replication or identity, where the task is to replicate the bit pattern of the input on
the output. We used a N-N-N network for this task so that we have a comparison
with the parity problem as N varies for roughly the same number of weights (2N 2 +
2N) in each network. The learning curves for the 6-6-6 problem are plotted in Fig.
lb. The critical value also seems to be 16 (l = 4).

p erhaps b ecause we do not d ecrease 6w and 11 as learning proceeds. He did not check this for large
problems as we did. In an implementation, one will not be able to reduce 6w too much so that the effect
on the output error can be measur ed. It is also likely that multiple perturbations can be done more
quickly than multiple pattern presentations, if learning speed is an issue. He also notes the importance
of correlating with the change in error rather than the error alone as in (Dembo, 1990) .

A Parallel Gradient Descent Method for Learning in Analog VLSI Neural Networks 841

3.2 Scaling of the Critical Value with Problem Size

To determine how the critical value of perturbation iterations scales, we tried a
variety of problems besides the N-N-N replication and N-2N-1 parity. We added N-
2N-N replication and N-N-1 parity to see how more weights affect the same problem.
We also did N-N-N /2 edge counting, where the output is the number of sign changes
in an ordered row of N inputs. Finally we did N-2N-N and N-N-N hamming where
the output is the closest hamming code for N inputs. We varied the number of
perturbation iterations so that p = 1,2,5,10,20,50,100,200,400.

Edge N-N-N/2
Parity N-2N-1

i i

0 . I I 0 I I

lOll - , "'", ... , -- --~ ~

i i Hamming N-2N-N
Replication N-2N-N

~ ~

10) .tOO 100 100 '000 200 .00 100 eoo '000 -- --
Figure 2. Critical value scaling for different problems.

Fig. 2 gives a feel for the effective scale of the problem by plotting the critical value
of the number of perturbation iterations as a function of the number of weights for
some of the problems we looked at. Note that the required number of iterations is
not a steep function of the network size except for the parity problem. We speculate
that the scaling properties are dependent on the shape of the error surface. If the
derivatives in Eq. 9 are large in all dimensions (learning on a bowl-shaped surface),
then the effective number of parameters is large and the variance of the noise term
will be on the order of the number of weights, leading to a steep dependence in
Fig. 2. If, however, there are only a few weight directions with significantly large
error derivatives (learning on a taco shell), then the noise will scale at a slower
rate than the number of weights leading to a weak dependence of the critical value
with problem size. This is actually a nice feature of parallel perturbative learning
because it means learning will be noisy and slow in a bowl where it's easy, but
precise and fast in a taco shell where it's hard.

The critical value is required for convergence at the end of learning but not at
the start. This means it should be possible to anneal the number of perturbation
iterations to achieve an additional speedup over the one-weight-at-a-time perturba-

842 Alspector, Meir, Yuhas, Jayakumar, and Lippe

tion technique. We would also like to understand how to vary bw and 11 as learning
proceeds. The stochastic approximation literature is likely to serve as a useful guide.

3.3 Computational Geometry of Stochastic Gradient Descent

error

weight I

'" o

o o

fW;Y:t~~f~;s~~:ii~
' " :" :, H' • • • ••• _ ., , ' .,

Figure 3. Computational Geometry of Stochastic Gradient Descent.

Fig. 3a shows some relevant gradient vectors and angles in the learning problem.
For a particular pattern presentation, the true gradient, gb, from a back-propagation
calculation is compared with the one-weight-at-a-time gradient, go, from a pertur­
bation, bWi , in one weight direction. The gradient from perturbing all weights, gm,
adds a noise vector to go. By taking the normalized dot product between gm and
gb, one obtains the direction cosine between the estimated and the true gradient
direction. This is plotted in Fig. 3b for the 10 input N-N-l parity problem for all
nine perturbation values. The shaded bands increase in cos (decrease in angle) as
the number of perturbations goes from 1 to 400. Note that the angles are large
but that learning still takes place. Note also that the dot product is almost always
positive except for a few points at low perturbation numbers. Incidentally, by look­
ing at plots of the true to one-weight-at-a-time angles (not shown), we see that the
large angles are due almost entirely to the parallel perturbative noise term and not
to the stepsize, bw.

4 Outline of an analog implementation

Fig. 4 shows a diagram of a learning synapse using this perturbation technique.
Note that its only inputs are a single bit representing the sign of the perturbation
and a broadcast signal representing the change in the output error. Multiple per­
turbations can be averaged by the summing buffer and weight is stored as charge
on a capacitor or floating gate device.

A Parallel Gradient Descent Method for Learning in Analog VLSI Neural Networks 843

An estimate of the power and area of an analog chip implementation gives the
following: Using a standard 1.2J,.tm, double poly technology, the synapse with about
7 to 8 bits ofresolution and which includes a 0.5 pf storage capacitor, weight refresh
(Hochet, 1989) and update circuitry can be fabricated with an area of about 1600
J,.tm2 and with a power dissipation of about 100 J,.t W with continuous self-refresh.
This translates into a chip of about 22000 synapses at 2.2 watts on a 36 mm2 die
core. It is likely that the power requirements can be greatly reduced with a more
relaxed refresh technique or with a suitable non-volatile analog storage technology.

S WI,j P (Perturbation anneal)

, I ..
, I,J Teach .

I
umming &,

Integrating ,
buffer

~cw
~ --L I,j

~~
"-+.-~

I· k I., I, I,

aW.
1,1 ~

pertur6~r----. Synapse'
----_.

Figure 4. Diagram of perturbative learning synapse.

We intend to use our noise generation technique (Alspector, 1991) to provide un­
correlated perturbations potentially to thousands of synapses. Note also that the
error signal can be generated by a simple resistor or a comparator followed by a
summer. The difference signal can be generated by a simple differentiator.

5 Conclusion

We have analyzed a parallel perturbative learning technique and shown that it
should converge under the proper conditions. We have performed simulations on
a variety of test problems to demonstrate the scaling behavior of this learning
algorithm. We are continuing work to understand speedups possible in an analog
VLSI implementation. Finally, we describe such an implementation. Future work
will involve applying this technique to learning in recurrent networks.

Acknowledgment

We thank Barak Pearhuutter for valuable and insightful discussions and Gert
Cauwenberghs for making an advance copy of his paper available. This work has

844 Alspector, Meir, Yuhas, Jayakumar, and Lippe

been partially supported by AFOSR contract F49620-90-C-0042, DEF.

References

J. Alspector, J. W. Gannett, S. Haber, M.B. Parker, and R. Chu, "A VLSI-Efficient
Technique for Generating Multiple Uncorrelated Noise Sources and Its Application
to Stochastic Neural Networks", IEEE Trans. Circuits and Systems, 38, 109, (Jan.,
1991).

J. Alspector, A. Jayakumar, and S. Luna, "Experimental Evaluation of Learning
in a Neural Microsystem" in Advances in Neural Information Processing Systems
4, J. E. Moody, S. J. Hanson, and R. P. Lippmann (eds.) San Mateo,CA: Morgan­
Kaufmann Publishers (1992), pp. 871-878.

G. Cauwenberghs, "A Fast Stochastic Error-Descent Algorithm for Supervised
Learning and Optimization," in Advances in Neural Information Processing Sys­
tems, San Mateo, CA: Morgan Kaufman Publishers, vol. 5, 1993.

A. Dembo and T. Kailath, "Model-Free Distributed Learning", IEEE Trans. Neural
Networks Bt, (1990) pp. 58-70.

B. Flower and M. Jabri, "Summed Weight Neuron Perturbation: An O(n) Improve­
ment over Weight Perturbation," in Advances in Neural Information Processing
Systems, San Mateo, CA: Morgan Kaufman Publishers, vol. 5, 1993.

B. Hochet, "Multivalued MOS memory for Variable Synapse Neural Network", Elec­
tronics Letters, vol 25, no 10, (May 11, 1989) pp. 669-670.

M. Jabri and B. Flower, "Weight Perturbation: An Optimal Architecture and
Learning Technique for Analog VLSI Feedforward and Recurrent Multilayer N et­
works", Neural Computation 3 (1991) pp. 546-565.

D. Kirk, D. Kerns, K. Fleischer, and A. Barr, "Analog VLSI Implementation of
Gradient Descent," in Advances in Neural Information Processing Systems, San
Mateo, CA: Morgan Kaufman Publishers, vol. 5, 1993.

H.J. Kushner and D.S. Clark, "Stochastic Approximation Methods for Constrained
and Unconstrained Systems", p. 58 ff., Springer-Verlag, New York, (1978).

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning Internal Repre­
sentations by Error Propagation", in Parallel Distributed Processing: Ezplorations
in the Microstructure of Cognition. Vol. 1: Foundations, D. E. Rumelhart and
J. L. McClelland (eds.), MIT Press, Cambridge, MA (1986), p. 318.

S. Venkatesh, "Directed Drift: A New Linear Threshold Algorithm for Learning
Binary Weights On-Line", Journal of Computer Science and Systems, (1993), in
press.

B. Widrow and M. A. Lehr, "30 years of Adaptive Neural Networks. Perceptron,
Madaline, and Backpropagation", Proc. IEEE 78 (1990) pp. 1415-1442.

J. Zinn-Justin, "Quantum Field Theory and Critical Phenomena", p. 57 ff., Oxford
University Press, New York, (1989).

PART XI

COGNITIVE
SCIENCE

