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Abstract 

A connection is drawn between rational functions, the realization 
theory of dynamical systems, and feedforward neural networks. 
This allows us to parametrize single hidden layer scalar neural 
networks with (almost) arbitrary analytic activation functions in 
terms of strictly proper rational functions. Hence, we can solve the 
uniqueness of parametrization problem for such networks. 

1 INTRODUCTION 

Nonlinearly parametrized representations of functions ¢: IR -+- IR of the form 

n 

(1.1) ¢(x) = L CiU(X - ai) x E IR, 
i=l 

have attracted considerable attention recently in the neural network literature. Here 
u: IR -+- IR is typically a sigmoidal function such as 

(1.2) 

but other choices than (1.2) are possible and of interest. Sometimes more complex 
representations such as 

n 

(1.3) ¢(x) = L ciu(bix - ad 
i=l 

623 



624 Helmke and Williamson 

or even compositions of these are considered. 

The purpose of this paper is to explore some parametrization issues regarding (1.1) 
and in particular to show the close connection these representations have with the 
standard system-theoretic realization theory for rational functions. We show how 
to define a generalization of (1.1) parametrized by (A, b, c), where A is a matrix 
over a field, and band c are vectors. (This is made more precise below). The 
parametrization involves the (A, b, c) being used to define a rational function. The 
generalized u-representation is then defined in terms of the rational function. This 
connection allows us to use results available for rational functions in the study of 
neural-network representations such as (1.1). It will also lead to an understanding 
of the geometry of the space of functions. 

One of the main contributions of the paper is to show how in general neural network 
representations are related to rational functions. In this summary all proofs have 
been omitted. A complete version of the paper is available from the second author. 

2 REALIZATIONS RELATIVE TO A FUNCTION 

In this section we explore the relationship between sigmoidal representations of real 
analytic functions ¢: II --+ IR defined on an interval II C IR, real rational functions 
defined on the complex plane C, and the well established realization theory for 
linear dynamical systems 

x(t) Ax(t) + bu(t) 
y(t) cx(t) + du(t). 

For standard textbooks on systems theory and realization theory we refer to [5, 7]. 

Let IK denote either the field IR of real numbers or the field C of complex numbers. 
Let ~ C C be an open and simply connected subset of the complex plane and let 
u: ~ --+ C be an analytic function defined on ~. For example, u may be obtained 
by an analytic continuation of some sigmoidal function u: IR --+ IR into the domain 
of holomorphy of the complex plane. 

Let T: V --+ V be a linear operator on a finite-dimensional IK-vector space V such 
that T has all its eigenvalues in ~. Let r c ~ be a simple closed curve, oriented 
in the counter-clockwise direction, enclosing all the eigenvalues of T in its interior. 
More generally, r may consist of a finite number of simple closed curves rk with 
interiors ~~ such that the union of the domains ~~ contains all the eigenvalues of 
T. Then the matrix valued function u(T) is defined as the contour integral [8, p.44] 

(2.1) u(T) := 21. r u(z) (zI - T)-l dz. 
7rZ Jr 

Note that for each linear operator T: V --+ V, u(T): V --+ V is again a linear 
operator on V. 

If we now make the substitution T := xl + A for x E C and A: V --+ V IK-linear, 
then 

u(xI + A) = 21. f u(z) «z - x)I - A)-l dz 
7rZ Jr 
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becomes a function of the complex variable x, at least as long as r contains all the 
eigenvalues of xl + A. Using the change of variables e := z - x we obtain 

(2.2) u(xl + A) = ~ ( u(x + e) (el - A)-I de 
27rZ Jr' 

where r' = r - x C ~ encircles all the eigenvalues of A. 

Given an arbitrary vector b E V and a linear functional c: V ---+- IK we achieve the 
representation 

(2.3) 

Note that in (2.3) the simple closed curve r c C is arbitrary, as long as it satisfies 
the two conditions 

(2.4) 
(2.5) 

r encircles all the eigenvalues of A 

x + r = {x +el e E r} c~. 

Let </>: 1I ---+- ~ be a real analytic function in a single variable x E 1I, defined on an 
interval II C ~. 

Definition 2.1 A quadruple (A, b, c, d) is called a finite-dimensional u-realization 
of </>: II ---+- ~ over a field of constants IK if for all x E 1I 

(2.6) </>(x) = cu(xl + A)b + d 

holds, where the right hand side is given by (2.3) and r is assumed to satisfy the 
conditions (2.4)-(2.5). Here d E IK, b E V, and A: V ---+- V, c: V ---+- IK are IK-linear 
maps and V is a finite dimensional IK-vector space. 

Definition 2.2 The dimension (or degree) of a u-realization is dimK V. The 0'­

degree of </>, denoted 817 (</», is the minimal dimension of all u-realizations of </>. A 
minimal u-realization is a u-realization of minimal dimension 817 (</». 

u-realizations are a straightforward extension of the system-theoretic notion of a 
realization of a transfer function. In this paper we will address the following specific 
questions concerning u-realizations. 

Q1 What are the existence and uniqueness properties of u-realizations? 

Q2 How can one characterize minimalu-realizations? 

Q3 How can one compute 817 (</»? 

3 EXISTENCE OF IT-REALIZATIONS 

We now consider the question of existence of u-realizations. To set the stage, we 
consider the systems theory case u(x) = x-I first. Assume we are given a formal 
power senes 

(3.1) 
N 
"" </>i . </>(x) = L.J 1 x" . z. ,=0 

N $00, 
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and that (A, b, c) is a O'-realization in the sense of definition 2.1. The Taylor expan­
sion of c(xI + A)-lb at ° is (for A nonsingular) 

00 

(3.2) c(xI + A)-lb = 2:)-I)icA-(i+l)bxi. 
i=O 

Thus 

(3.3) i = 0, ... ,N. 

if and only if the expansions of (3.1) and (3.2) coincide up to order N. Observe [7] 
that 

¢(x) = c(xI + A)-lb and dim 'V < 00 

¢(x) is rational with ¢(oo) = 0. 

The possibility of solving (3.3) is now easily seen as follows. Let 'V = lRN +1 = 
Map({O, ... ,N},lR) be the finite or infinite (N + I)-fold product space oflR. (Here 
Map(X, Y) denotes the set of all maps from X to Y.) If N is finite let 

(3.4) A-I 
[ O~ :.:: ~1 °0

1
.] E ]R(N+l)X(N+l), 

b = (10 ... O)T E'V, c= (~, ¢o, ¢l, ~~, ... , (~~~)!). 
For N = 00 we take A-I: lRN ---Io]RN as a shift operator 

A-I: ]RN ---Io]RN 

(3.5) 

We then have 

and 

A-I: (xo, xl, ... ) .-- -(0, xo, Xl, •• • ) 

b=(I,O, ... ), c=(0,¢0,¢I,¢2/2!, ... ): 

Lemma 3.1 Let O'(x) = Li 7txi be analytic at X = ° and let (A, b, c) be a 0'­

realization of the formal power series ¢( x) = L~o !ffx i , N ~ 00 (i. e. matching of 
the first N + 1 derivatives of ¢(x) and cO'(xI + A)b at X = 0). Then 

(3.6) ¢i = cO'(i)(A)b for i = 0, ... , N. 

Observe that for O'(x) = x-I we have O'(i)(-A) = i!(A-l)i+1 as before. The exis­
tence part of the realization question Ql can now be restated as 

Q4 Given O'(x):= L:o~xi and a sequence of real numbers (¢o, ... ,¢N), does 
there exist an (A, b, c) with 

(3.7) ¢i = cO'(i)(A)b, i = 0, ... , N? 
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Thus question Q1 is essentially a Loewner interpolation question (1,3]. 

Let Ii = cAib, f. E No, and let 

(3.8) 
[ Uo 

0"1 0"2 

::! 1 = (Ui+i)r;=o· 
0"1 0"2 0"3 

F= 7 0"3 0"4 

10 

[¢] = [ ~q . II 

h]= 12/2! and 
13/3! 

Write 

(3.9) 

Then (3.6) (for N = 00) can formally be written as 

(3.10) [¢] = F· hJ. 
Of course, any meaningful interpretation of (3.10) requires that the infinite sums 
,",00 17.+i • W • t Th· h C 1 ·f ,",00 2 . W i....Ji=O i! Ii, z E !"I0, eXls . IS appens, lor examp e, I i....Ji=O O"i+i < 00, z E 1"10 

and 2:~0 C'Yi Jj!)2 < 00 exist. We have already seen that every finite or infinite 
sequence h] has a realization (A, b, c). Thus we obtain 

Corollary 3.2 A function ¢(x) admits a O"-realization if and only if [¢] E 
image(F). 

Corollary 3.3 Let H = (/Hi )~=o. There exists a finite dimensionalO"-realization 
of ¢(x) if and only if[¢] = Fh] with rankH < 00. In this case 617 (¢) = rankH. 

4 UNIQUENESS OF a-REALIZATIONS 

In this section we consider the uniqueness of the representation (2.3). 

Definition 4.1 (c.f. [2]) A system {91, ... ,9n} of continuous functions 9i: JI -P 

lR?, defined on an interval IT C lR?, is said to satisfy a Haar* condition of order 
n on JI if 91, ... ,9n are linearly independent, i. e. For every Cl, . .. , Cn E lR? with 
2:7:1 Ci9i(X) = 0 for all x E JI, then Cl = ... = Cn = O. 

Remark The Haar* condition is implied by the stronger classical Haar condition 
that 

[ 
91(Xt} 

det : 

gn(xd 

for all distinct (xi)i=1 in IT. Equivalently, if 2:7=1 cigi(X) has n distinct roots in JI, 
then Cl = ... = Cn = o. 

Definition 4.2 A subset A of C is called self-conju9ate if a E A implies a E A. 



628 Helmke and Williamson 

Let (1': ~ ---+ ~ be a continuous function and define (1'~~)(x) := (1'(i)(x + Zi). Let 

m 

'" := ("'1, ... ''''m) where L "'j = n, "'j EN, "'j ~ 1, j = 1, ... ,m 
j=l 

denote a combination of n of size m. For a given combination", = ("'1, ... , "'m) of 
n, let 1:= {I, ... ,m} and let Ji := {I, ... ,"'d. Let Zm := {ZI, ... ,zm} and let 

(4.1 ) ( Z) { (i-I). I . J} (1' "', m := (1'Zi : ~ E ,J E i . 

Definition 4.3 If for all m < n, for all combinations", = ("'I, ... ''''m) of n of size 
m, and for any self-conjugate set Zm of distinct points, (1'("" Zm) satisfies a H aar* 
condition of order n, then (1' is said to be Haar generating of order n. 

Theorem 4.4 (Uniqueness) Let (1': ~ ---+ ~ be Haar generating of order at least 
2n on 1I and let (A, b, c) and (A, b, c) be minimal (1'-realizations of order n of functions 
¢ and ¢ respectively. Then the following equivalence holds 

c(1'(xI + A)b = c(1'(xI + A)b \:Ix E 1I 

(4.2) 

c(eI - A)-lb = c(eI - A)-Ii; \:Ie E ~. 

Conversely, if ({2) holds for almost all order n triples (A, b, c), (A, b, c), then 
(1': ~ ---+ ~ is Haar generating on 1I of order ~ n. 

The following result gives examples of activation functions (1': ~ ---+ ~ which are 
Haar generating. 

Lemma 4.5 Let d E No. Then 1) The function (1'(x) = x- d is Haar generating of 
arbitrary order. 2) The monomial (1'(x) = x d is Haar generating of order d + 1. 3) 
The function e- x2 is Haar generating of arbitrary order. 

Remark A simple example of a (1' which is not Haar generating of order ~ 2 is 
(1'(x) = eX. In fact, in this case (1'(x+Zj) = Cj(1'(x+zd for Cj = eZj - Z " j = 2, ... ,no 

Remark The function (1'(x) = (l+e- X)-l is not Haar generating of any order > 2. 
By the periodicity of the complex exponential function, (1'( x + 27ri) = (1'( x - 27ri), 
i = .;::I, for all x. Thus the Haar* condition fails for Z2 = {27ri, -27ri}. 

In particular, the above uniqueness result fails for the standard sigmoid case. In 
order to cover this case we need a further definition. 

Definition 4.6 Let ° = n c C be a self-conjugate subset of C. A function (1': ~ ---+ 

~ is said to be Haar generating of order non 0, if for all m $ n, for all combinations 
'" = ("'1, ... ,"'m) of n of size m, and for any self-conjugate subset Zm C n of 
distinct points of 0, (1'("', Zm) satisfies a Haar* condition of order n. 

Of course for n = C, this definition coincides with definition 4.3. 
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Theorem 4.1 (Local Uniqueness) Let u: ~ -+ ~ be analytic and let 0 C C 
be a self-conjugate subset contained in the domain of holomorphy of u. Let 1I be a 
nontrivial subinterval ofOn~. Suppose u: ~ -+ ~ is Haar generating on 0 of order 
at least 2n, n EN. Then for any two minimal u-realizations (A, b, c) and (A, b, c) 
of orders at most n with spect A, spect A E n the following equivalence holds: 

cu(xI + A)~ = cu(xI + A)b 'Vx E 1I 

c(~I - A)-lb = c(~I - A)-Ii; 'Ve E~. 
(4.3) 

Lemma 4.8 Let 0 := {z E C: I~zl < 7r}. Then the standard sigmoid function 
u(x) = (1 + e-X)-l is Haar generating on 0 of arbitrary order. 

5 MAIN RESULT 

As a consequence of the uniqueness theorems 4.4 and 4.7 we can now state our main 
result on the existence of minimal u-realizations of a function ¢(x). It extends a 
parallel result for standard transfer function realizations, where u( x) = x-I. 

Theorem 5.1 (Realization) Let n c C be a self-conjugate subset, contained in 
the domain of holomorphy of a real meromorphic function u: ~ -+ ~. Suppose u is 
Haar generating on n of order at least 2n and assume ¢(x) has a finite dimensional 
realization (A, b, c) of dimension at most n such that A has all its eigenvalues in O. 

1. There exists a minimal u-realization (AI, bl , cd of ¢(x) of degree 6q (¢) ::; 
dim(A, b, c). Furthermore, there exists an invertible matrix S such that 

(5.1) SAS- I = [~l ~~ 1 ' Sb = [ be: 1 ' cS-1 = [CI, C2]. 

2. If (AI, bt, cd and (A~, b~, cD are minimal u-realizations of ¢( x) such that 
the eigenvalues of Al and A~ are contained in 0, then there exists a unique 
invertible matrix S such that 

(5.2) 

3. A u-realization (A, b, c) is minimal if and only if(A, b, c) is controllable and 
observable; i.e. if and only if (A, b, c) satisfies the generic rank conditions 

rank(b, Ab, ... ,An-Ib) = n, rank [ c~ 1 = n 

cAn-1 

for A E ocn xn , bE ocn, cT E ocn . 

Remark The use of the terms "observable" and "controllable" is solely for formal 
correspondence with standard systems theory. There are no dynamical systems 
actually under consideration here. 
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Remark Note that for any u-realization (A, b, c) of the form A 

[ All A12] [ b1 ] [] h () [ U(All) * ] o A22 ,b = 0 ,c = Cl, C2 ,we ave u A = 0 U(A22 ) 

and thus cu(xI + A)b = clu(xI + A ll )b1 • Thus transformations of the above kind 
always reduce the dimension of au-realization . 

Corollary 5.2 ([9]) Let u(x) = (1 + e- X )-l and let ¢(x) = E~=l CiU(X -

ai) = E?=l c~u(x - aD be two minimal length u-representations with I~ad < 
11", l~aH < 11", i = 1, ... ,n. Then (aL cD = (ap(i)' Cp(i» for a unique permuta-
tion p: {I, . .. ,n} - {I, ... ,n}. In particular, minimal length representation (1.1) 
with real coefficients ai and Ci are unique up to a permutation of the summands. 

6 CONCLUSIONS 

We have drawn a connection between the realization theory for linear dynamical 
systems and neural network representations. There are further connections (not 
discussed in this summary) between representations of the form (1.3) and rational 
functions of two variables. There are other questions concerning diagonalizable 
realizations and Jordan forms. Details are given in the full length version of this 
paper . Open questions include the problem of partial realizations [4,6] .1 
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