
Q-Learning with Hidden-Unit Restarting

Charles W. Anderson
Department of Computer Science

Colorado State University
Fort Collins, CO 80523

Abstract

Platt's resource-allocation network (RAN) (Platt, 1991a, 1991b)
is modified for a reinforcement-learning paradigm and to "restart"
existing hidden units rather than adding new units. After restart­
ing, units continue to learn via back-propagation. The resulting
restart algorithm is tested in a Q-Iearning network that learns to
solve an inverted pendulum problem. Solutions are found faster on
average with the restart algorithm than without it.

1 Introduction

The goal of supervised learning is the discovery of a compact representation that
generalizes well . Such representations are typically found by incremental, gradient­
based search, such as error back-propagation. However, in the early stages of learn­
ing a control task, we are more concerned with fast learning than a compact rep­
resentation. This implies a local representation with the extreme being the mem­
orization of each experience. An initially local representation is also advantageous
when the learning component is operating in parallel with a conventional, fixed
controller. A learning experience should not generalize widely; the conventional
controller should be preferred for inputs that have not yet been experienced.

Platt's resource-allocation network (RAN) (Platt, 1991a, 1991b) combines gradient
search and memorization. RAN uses locally tuned (gaussian) units in the hidden
layer. The weight vector of a gaussian unit is equal to the input vector for which the
unit produces its maximal response. A new unit is added when the network's error
magnitude is large and the new unit's radial domain would not significantly overlap
domains of existing units. Platt demonstrated RAN on the supervised learning task

81

82 Anderson

of predicting values in the Mackey-Glass time series.

We have integrated Platt's ideas with the reinforcement-learning algorithm called
Q-Iearning (Watkins, 1989). One major modification is that the network has a
fixed number of hidden units, all in a single-layer, all of which are trained on every
step. Rather than adding units, the least useful hidden unit is selected and its
weights are set to new values, then continue the gradient-based search. Thus, the
unit's search is restarted. The temporal-difference errors control restart events in a
fashion similar to the way supervised errors control RAN's addition of new units.

The motivation for starting with all units present is that in a parallel implementa­
tion, the computation time for a layer of one unit is roughly the same as that for
a layer with all of the units. All units are trained from the start. Any that fail to
learn anything useful are re-allocated when needed.

Here the Q-Iearning algorithm with restarts is applied to the problem of learning
to balance a simulated inverted pendulum. In the following sections, the inverted
pendulum problem and Watkin's Q-Learning algorithm are described. Then the
details of the restart algorithm are given and results of applying the algorithm to
the inverted pendulum problem are summarized.

2 Inverted Pendulum

The inverted pendulum is a classic example of an inherently unstable system. The
problem can be used to study the difficult credit assignment problem that arises
when performance feedback is provided only by a failure signal. This problem has
often used to test new approaches to learning control (from early work by Widrow
and Smith, 1964, to recent studies such as Jordan and Jacobs, 1990, and Whitley,
Dominic, Das, and Anderson, 1993). It involves a pendulum hinged to the top
of a wheeled cart that travels along a track of limited length. The pendulum is
constrained to move within the vertical plane. The state is specified by the position
and velocity of the cart and the angle between the pendulum and vertical and the
angular velocity of the pendulum.

The only information regarding the goal of the task is provided by the failure signal,
or reinforcement, rt, which signals either the pendulum falling past ±12° or the cart
hitting the bounds of the track at ±1 m. The state at time t of the pendulum is
presented to the network as a vector, Xt, of the four state variables scaled to be
between 0 and 1.

For further details of this problem and other reinforcement learning approaches to
this problem, see Barto, Sutton, and Ande!'-son (1983) and Anderson (1987).

3 Q-Learning

The objective of many control problems is to optimize a performance measure over
time. For the inverted pendulum problem, we define a reinforcement signal to be -1
when the pendulum angle or the cart position exceed their bounds, and 0 otherwise.
The objective is to maximize the sum of this reinforcement signal over time.

Q-Learning with Hidden-Unit Restarting 83

If we had complete knowledge of state transition probabilities we could apply dy­
namic programming to find the sequence of pushes that maximize the sum of rein­
forcements. Reinforcement learning algorithms have been devised to learn control
strategies when such knowledge is not available. In fact, Watkins has shown that one
form of his Q-Iearning algorithm converges to the dynamic programming solution
(Watkins, 1989; Watkins and Dayan, 1992).

The essence of Q-Iearning is the learning and use of a Q function, Q(x, a), that is
a prediction of a weighted sum of future reinforcement given that action a is taken
when the controlled system is in a state represented by x. This is analogous to the
value function in dynamic programming. Specifically, the objective of Q-Iearning is
to form the following approximation:

00

Q(Xt, at) :::::: L .. l7't+k+1
k=O

where 0 < 'Y < 1 is a discount rate and 7't is the reinforcement received at time t.

Watkins (1989) presents a number of algorithms for adjusting the parameters of Q.
Here we focus on using error back-propagation to train a neural network to learn the
Q function. For Q-Iearning, the following temporal-difference error (Sutton, 1988)

et = 7't+1 + 'Y max [Q(Xt+1, at+t)] - Q(Xt, at).
at+l

is derived by using max [Q(Xt+l, at+t)] as an approximation to L~=o 'Yk 7't+k+2. See
at+l

(Barto, Bradtke, and Singh, 1991) for further discussion ofthe relationships between
reinforcement learning and dynamic programming.

4 Q-Learning Network

For the inverted pendulum experiments reported here, a neural network with a
single hidden layer was used to learn the Q(x, a) function. As shown in Figure 1,
the network has four inputs for the four state variables of the inverted pendulum,
and two outputs corresponding to the two possible actions for this problem, similar
to Lin (1992). In addition to the weights shown, wand v, the two units in the
output layer each have a single weight with a constant input of 0.5.

The activation function of the hidden units is the approximate gaussian function
used by Platt. Let dj be the squared distance between the current input vector, x,
and the weights in hidden unit j.

4

dj = L(Xi - Wj,i)2
i=l

Here Xi is the ith component of x at the current time. The output, Yj, of hidden
unit j is

Yj = { if dj < P;
otherwise,

84 Anderson

Xl

x2 Q(x,-lO)

x3

X Q(x,+10)
4

Figure 1: Q-Learning Network

where p controls the radius of the region in which the unit's output is nonzero.
Unlike Platt, p is constant and equal for all units.

The output units calculate weighted sums of the hidden unit outputs and the
constant input. The output values are the current estimates of Q(Xt, -10) and
Q(Xt, 10), which are predictions of future reinforcement given the current observed
state of the inverted pendulum and assuming a particular action will be applied in
that state.

The action applied at each step is selected as the one corresponding to the larger
of Q(Xt, -10) and Q(Xt, 10). To explore the effects of each action, the action with
the lower Q value is applied with a probability that decreases with time:

_ { 1 - 0.5At, if Q(Xt, 10) > Q(Xt, -10);
P - 0.5A t , otherwise,

{ 10,
at = -10,

with probability p;
with probability 1 - p.

To update all weights, error back-propagation is applied at each step using the
following temporal-difference error

{
,max[Q(xt+l,at+l)] - Q(Xt, at), if failure does not occur on step t + 1,

et = Gt+l

rt+l - Q(Xt, at), if failure occurs on step t + l.
Note that rt = 0 for all non-failure steps and drops out of the first expression.

Weights are updated by the following equations, assuming Unit j is the output unit
corresponding to the action taken, and all variables are for the current time t.

f3h - e yL V· L (x· - W· .) '" J,'" I J ,I
P

~WL .
'" ,I

~V· . J,I f3 e Yi

In all experiments, p = 2, A = 0.99999, and,
discussed in Section 6.

0.9. Values of f3 and f3h are

Q-Learning with Hidden-Unit Restarting 85

5 Restart Algorithm

After weights are modified by back-propagation, conditions for a restart are checked.
If conditions are met, a unit is restarted, and processing continues with the next
time step. Conditions and primary steps of the restart algorithm appear below as
the numbered equations.

5.1 When to Restart

Several conditions must be met before a restart is performed. First, the magnitude
of the error, et, must be larger than usual. To detect this, exponentially-weighted
averages of the mean, J1., and variance, u 2, of et are maintained and used to calculate
a normalized error, e~

e' t

J1.t+l
2

ut+l

For our experiments, Ie = 0.99.

et - (1 _ let)'

leJ1.t + (1 - Ie)et,

leU; + (1 - Ie)e? ,

Now we can state the first restart condition. A restart is considered on steps for
which the magnitude of the error is greater than 0.01 and greater than a constant
factor of the error's standard deviation, i.e., whenever

le,1 > om and le,1 > aV(1 ~l"n)' (1)

Of a small number of tested values, a = 0.2 resulted in the best performance.

Before choosing a unit to restart for this step, we determine whether or not the
current input vector is already "covered" by a unit. Assuming Yj is the output of
Unit j for the current input vector, the restart procedure is continued only if

Yj < 0.5, for j = 1, ... ,20 (2)

5.2 Which Ullit to Restart

As stated by Mozer and Smolensky (1989), ideally we would choose the least useful
unit as the one that results in the largest error when removed from the network.
For the Q-network, this requires the removal of one unit at a time, making multiple
attempts to balance the pendulum, and determining which unit when removed
results in the shortest balancing times. Rather than following this computationally
expensive procedure, we simply took the sum of the magnitudes of a hidden unit's
output weights as a measure of it's utility. This is one of several utility measures
suggested by Mozer and Smolensky and others (e.g., Kloph and Gose, 1969).

After a unit is restarted, it may require further learning experience to acquire a
useful function in the network. The amount of learning experience is defined as a
sum of magnitudes of the error et. The sum of error magnitudes since Unit j was

86 Anderson

restarted is given by Cj. Once this sum surpasses a maxImum, Cmax , the unit is
again eligible for restarting. Thus, Unit j is restarted when

Uj . min (IVI,j 1+ IV2,j I) (3)
JE{1 •...• 20}

and

Cj > Cmax . (4)
Without a detailed search, a value of Cmax = 10 was found to result in good perfor­
mance.

5.3 New Weights for Restarted Unit

Say Unit j is restarted. It's input weights are set equal to the current input vector,
x, the one for which the output of the network was in error. One of the two output
weights of Unit j is also modified. The output weight through which Unit j modifies
the output of the unit corresponding to the action actually taken is set equal to the
error, et. The other output weight is not modified.

6 Results

W·· }.'

where k

Xi, for i = 1, ... , 4,

{ I,
2,

if at = -10;
if at = 10.

(5)

(6)

The pendulum is said to be balanced when 90,000 steps (1/2 hour of simulated
time) have elapsed without failure. After every failure, the pendulum is reset to the
center ofthe track with a zero angle (straight up) and zero velocities. Performance is
judged by the average number of failures before the pendulum is balanced. Averages
were taken over 30 runs. Each run consists of choosing initial values for the hidden
units' weights from a uniform distribution from 0 to 1, then training the net until
the pendulum is balanced for 90,000 steps or a maximum number of 50,000 failures
is reached.

To determine the effect of restarting, we ccmpare the performance of the Q-Iearning
algorithm with and without restarts. Back-propagation learning rates are given by
13 for the output units and 13h for the hidden units. 13 and 13h were optimized for the
algorithm without restarts by testing a large number of values. The best values of
those tried are 13 = 0.05 and 13h = 1.0. These values were used for both algorithms.
A small number of values for the additional restart parameters were tested, so the
restart algorithm is not optimized for this problem.

Figure 2 is a graph of the number of steps between failures versus the number of
failures. Each algorithm was initialized with the same hidden unit weights. Without
restarts the pendulum is balanced for this run after 6,879 failures. With restarts it
is balanced after 3,415 failures.

The performances of the algorithms were averaged over 30 runs giving the following
results. The restart algorithm balanced the pendulum in all 30 runs, within an

100,000-

10,000-

Steps
Between 1,000 -
Failures

100 -

10 - I
o

With Restarts

I
2,000

Q-Learning with Hidden-Unit Restarting 87

Without Restarts
...
1,,\ I

" '¥ I I ~ I I J
, '.. I, . " _', I',

~ I :~'
" \ I "'-------, ... -

I
4,000

I
6,000

Failures

Figure 2: Learning Curves of Balancing Time Versus Failures (averaged over bins
of 100 failures)

average of 3,303 failures. The algorithm without restarts was unsuccessful within
50,000 failures for two of the 30 runs. Not counting the unsuccessful runs, this
algorithm balanced the pendulum within an average of 4,923 failures. Considering
the unsuccessful runs, this average is 7 ,928 failures.

In studying the timing of restarts, we observe that initially the number of restarts
is small, due to the high variance of et in the early stages of learning. During later
stages, we see that a single unit might be restarted many times (15 to 20) before it
becomes more useful (at least aecording to our measure) than some other unit.

7 Conclusion

This first test of an algorithm for restarting hidden units in a reinforcement-learning
paradigm led to a decrease in learning time for this task. However, much work
remains in studying the effects of each step of the restart procedure. Many alter­
natives exist, most significantly in the method for determining the utility of hidden
units. A significant extension of this algorithm would be to consider units with
variable-width domains, as in Platt's RAN algorithm.

Acknowledgenlents

The work was supported in part by the National Science Foundation through Grant
IRI-9212191 and by Colorado State University through Faculty Research Grant 1-
38592.

88 Anderson

References

C. W. Anderson. (1987). Strategy learning with multilayer connectionist repre­
sentations. Technical Report TR87-509.3, GTE Laboratories, Waltham, MA,
1987. Corrected version of article that was published in Proceedings of the
Fourth International Workshop on Machine Learning, pp. 103-114, June, 1987.

A. G. Barto, S. J. Bradtke, and S. P. Singh. (1991). Real-time learning and
control using asynchronous dynamic programming. Technical Report 91-57,
Department of Computer Science, University of Massachusetts, Amherst, MA,
Aug.

A. G. Barto, R. S. Sutton, and C. W. Anderson. (1983). Neuronlike elements that
can solve difficult learning control problems. IEEE Transactions on Systems,
Man, and Cybernetics, 13:835-846. Reprinted in J. A. Anderson and E. Rosen­
feld, Neurocomputing: Foundations of Research, MIT Press, Cambridge, MA,
1988.

M. I. Jordan and R. A. Jacobs. (1990). Learning to control an unstable system with
forward modeling. In D. S. Touretzky, editor, Advances in Neural Information
Processing Systems, volume 2, pages 324-331. Morgan Kaufmann, San Mateo,
CA.

A. H. Klopf and E. Gose. (1969). An evolutionary pattern recognition network.
IEEE Transactions on Systems, Science, and Cybernetics, 15:247-250.

L.-J. Lin. (1992). Self-improving reactive agents based on reinforcement learning,
planning, and teaching. Machine Learning, 8(3/4):293-32l.

M. C. Mozer and P. Smolensky. (1989). Skeltonization: A technique for trimming
the fat from a network via relevance assessment. In D. S. Touretzky, editor,
Advances in Neural Information Systems, volume 1, pages 107-115. Morgan
Kaufmann, San Mateo, CA, 1989.

J. C. Platt. (1991a). Learning by combining memorization and gradient descent.
In R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Advances in
Neural Information Processing Systems 3, pages 714-720. Morgan Kaufmann
Publishers, San Mateo, CA.

J. C. Platt. (1991 b) A resource-allocating network for function interpolation. N eu­
ral Computation, 3:213-225.

R. S. Sutton. (1988). Learning to predict by the method of temporal differences.
Machine Learning, 3:9-44.

C. J. C. H. Watkins. (1989). Learning with Delayed Rewards. PhD thesis, Cam­
bridge University Psychology Department.

C. J. C. H. Watkins and P. Dayan. (1992). Q-Iearning. Machine Learning,
8(3/4):279-292.

D. Whitley, S. Dominic, R. Das, and C. Anderson. (1993). Genetic reinforcement
learning for neurocontrol problems. Machine Learning, to appear.

B. Widrow and F. W. Smith. (1964). Pattern-recognizing control systems. In Pro­
ceedings of the 1963 Computer and Information Sciences (COINS) Symposium,
pages 288-317, Washington, DC. Spartan.

