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Abstract 

Platt's resource-allocation network (RAN) (Platt, 1991a, 1991b) 
is modified for a reinforcement-learning paradigm and to "restart" 
existing hidden units rather than adding new units. After restart­
ing, units continue to learn via back-propagation. The resulting 
restart algorithm is tested in a Q-Iearning network that learns to 
solve an inverted pendulum problem. Solutions are found faster on 
average with the restart algorithm than without it. 

1 Introduction 

The goal of supervised learning is the discovery of a compact representation that 
generalizes well . Such representations are typically found by incremental, gradient­
based search, such as error back-propagation. However, in the early stages of learn­
ing a control task, we are more concerned with fast learning than a compact rep­
resentation. This implies a local representation with the extreme being the mem­
orization of each experience. An initially local representation is also advantageous 
when the learning component is operating in parallel with a conventional, fixed 
controller. A learning experience should not generalize widely; the conventional 
controller should be preferred for inputs that have not yet been experienced. 

Platt's resource-allocation network (RAN) (Platt, 1991a, 1991b) combines gradient 
search and memorization. RAN uses locally tuned (gaussian) units in the hidden 
layer. The weight vector of a gaussian unit is equal to the input vector for which the 
unit produces its maximal response. A new unit is added when the network's error 
magnitude is large and the new unit's radial domain would not significantly overlap 
domains of existing units. Platt demonstrated RAN on the supervised learning task 
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of predicting values in the Mackey-Glass time series. 

We have integrated Platt's ideas with the reinforcement-learning algorithm called 
Q-Iearning (Watkins, 1989). One major modification is that the network has a 
fixed number of hidden units, all in a single-layer, all of which are trained on every 
step. Rather than adding units, the least useful hidden unit is selected and its 
weights are set to new values, then continue the gradient-based search. Thus, the 
unit's search is restarted. The temporal-difference errors control restart events in a 
fashion similar to the way supervised errors control RAN's addition of new units. 

The motivation for starting with all units present is that in a parallel implementa­
tion, the computation time for a layer of one unit is roughly the same as that for 
a layer with all of the units. All units are trained from the start. Any that fail to 
learn anything useful are re-allocated when needed. 

Here the Q-Iearning algorithm with restarts is applied to the problem of learning 
to balance a simulated inverted pendulum. In the following sections, the inverted 
pendulum problem and Watkin's Q-Learning algorithm are described. Then the 
details of the restart algorithm are given and results of applying the algorithm to 
the inverted pendulum problem are summarized. 

2 Inverted Pendulum 

The inverted pendulum is a classic example of an inherently unstable system. The 
problem can be used to study the difficult credit assignment problem that arises 
when performance feedback is provided only by a failure signal. This problem has 
often used to test new approaches to learning control (from early work by Widrow 
and Smith, 1964, to recent studies such as Jordan and Jacobs, 1990, and Whitley, 
Dominic, Das, and Anderson, 1993). It involves a pendulum hinged to the top 
of a wheeled cart that travels along a track of limited length. The pendulum is 
constrained to move within the vertical plane. The state is specified by the position 
and velocity of the cart and the angle between the pendulum and vertical and the 
angular velocity of the pendulum. 

The only information regarding the goal of the task is provided by the failure signal, 
or reinforcement, rt, which signals either the pendulum falling past ±12° or the cart 
hitting the bounds of the track at ±1 m. The state at time t of the pendulum is 
presented to the network as a vector, Xt, of the four state variables scaled to be 
between 0 and 1. 

For further details of this problem and other reinforcement learning approaches to 
this problem, see Barto, Sutton, and Ande!'-son (1983) and Anderson (1987). 

3 Q-Learning 

The objective of many control problems is to optimize a performance measure over 
time. For the inverted pendulum problem, we define a reinforcement signal to be -1 
when the pendulum angle or the cart position exceed their bounds, and 0 otherwise. 
The objective is to maximize the sum of this reinforcement signal over time. 
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If we had complete knowledge of state transition probabilities we could apply dy­
namic programming to find the sequence of pushes that maximize the sum of rein­
forcements. Reinforcement learning algorithms have been devised to learn control 
strategies when such knowledge is not available. In fact, Watkins has shown that one 
form of his Q-Iearning algorithm converges to the dynamic programming solution 
(Watkins, 1989; Watkins and Dayan, 1992). 

The essence of Q-Iearning is the learning and use of a Q function, Q(x, a), that is 
a prediction of a weighted sum of future reinforcement given that action a is taken 
when the controlled system is in a state represented by x. This is analogous to the 
value function in dynamic programming. Specifically, the objective of Q-Iearning is 
to form the following approximation: 

00 

Q(Xt, at) :::::: L .. l7't+k+1 
k=O 

where 0 < 'Y < 1 is a discount rate and 7't is the reinforcement received at time t. 

Watkins (1989) presents a number of algorithms for adjusting the parameters of Q. 
Here we focus on using error back-propagation to train a neural network to learn the 
Q function. For Q-Iearning, the following temporal-difference error (Sutton, 1988) 

et = 7't+1 + 'Y max [Q(Xt+1, at+t)] - Q(Xt, at). 
at+l 

is derived by using max [Q(Xt+l, at+t)] as an approximation to L~=o 'Yk 7't+k+2. See 
at+l 

(Barto, Bradtke, and Singh, 1991) for further discussion ofthe relationships between 
reinforcement learning and dynamic programming. 

4 Q-Learning Network 

For the inverted pendulum experiments reported here, a neural network with a 
single hidden layer was used to learn the Q( x, a) function. As shown in Figure 1, 
the network has four inputs for the four state variables of the inverted pendulum, 
and two outputs corresponding to the two possible actions for this problem, similar 
to Lin (1992). In addition to the weights shown, wand v, the two units in the 
output layer each have a single weight with a constant input of 0.5. 

The activation function of the hidden units is the approximate gaussian function 
used by Platt. Let dj be the squared distance between the current input vector, x, 
and the weights in hidden unit j. 

4 

dj = L(Xi - Wj,i)2 
i=l 

Here Xi is the ith component of x at the current time. The output, Yj, of hidden 
unit j is 

Yj = { if dj < P; 
otherwise, 
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Xl 

x2 Q(x,-lO) 

x3 

X Q(x,+10) 
4 

Figure 1: Q-Learning Network 

where p controls the radius of the region in which the unit's output is nonzero. 
Unlike Platt, p is constant and equal for all units. 

The output units calculate weighted sums of the hidden unit outputs and the 
constant input. The output values are the current estimates of Q(Xt, -10) and 
Q(Xt, 10), which are predictions of future reinforcement given the current observed 
state of the inverted pendulum and assuming a particular action will be applied in 
that state. 

The action applied at each step is selected as the one corresponding to the larger 
of Q(Xt, -10) and Q(Xt, 10). To explore the effects of each action, the action with 
the lower Q value is applied with a probability that decreases with time: 

_ { 1 - 0.5At, if Q(Xt, 10) > Q(Xt, -10); 
P - 0.5A t , otherwise, 

{ 10, 
at = -10, 

with probability p; 
with probability 1 - p. 

To update all weights, error back-propagation is applied at each step using the 
following temporal-difference error 

{ 
,max[Q(xt+l,at+l)] - Q(Xt, at), if failure does not occur on step t + 1, 

et = Gt+l 

rt+l - Q(Xt, at), if failure occurs on step t + l. 
Note that rt = 0 for all non-failure steps and drops out of the first expression. 

Weights are updated by the following equations, assuming Unit j is the output unit 
corresponding to the action taken, and all variables are for the current time t. 

f3h - e yL V· L (x· - W· .) '" J,'" I J ,I 
P 

~WL . 
'" ,I 

~V· . J,I f3 e Yi 

In all experiments, p = 2, A = 0.99999, and, 
discussed in Section 6. 

0.9. Values of f3 and f3h are 
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5 Restart Algorithm 

After weights are modified by back-propagation, conditions for a restart are checked. 
If conditions are met, a unit is restarted, and processing continues with the next 
time step. Conditions and primary steps of the restart algorithm appear below as 
the numbered equations. 

5.1 When to Restart 

Several conditions must be met before a restart is performed. First, the magnitude 
of the error, et, must be larger than usual. To detect this, exponentially-weighted 
averages of the mean, J1., and variance, u 2, of et are maintained and used to calculate 
a normalized error, e~ 

e' t 

J1.t+l 
2 

ut+l 

For our experiments, Ie = 0.99. 

et - (1 _ let)' 

leJ1.t + (1 - Ie)et, 

leU; + (1 - Ie )e? , 

Now we can state the first restart condition. A restart is considered on steps for 
which the magnitude of the error is greater than 0.01 and greater than a constant 
factor of the error's standard deviation, i.e., whenever 

le,1 > om and le,1 > aV(1 ~l"n)' (1) 

Of a small number of tested values, a = 0.2 resulted in the best performance. 

Before choosing a unit to restart for this step, we determine whether or not the 
current input vector is already "covered" by a unit. Assuming Yj is the output of 
Unit j for the current input vector, the restart procedure is continued only if 

Yj < 0.5, for j = 1, ... ,20 (2) 

5.2 Which Ullit to Restart 

As stated by Mozer and Smolensky (1989), ideally we would choose the least useful 
unit as the one that results in the largest error when removed from the network. 
For the Q-network, this requires the removal of one unit at a time, making multiple 
attempts to balance the pendulum, and determining which unit when removed 
results in the shortest balancing times. Rather than following this computationally 
expensive procedure, we simply took the sum of the magnitudes of a hidden unit's 
output weights as a measure of it's utility. This is one of several utility measures 
suggested by Mozer and Smolensky and others (e.g., Kloph and Gose, 1969). 

After a unit is restarted, it may require further learning experience to acquire a 
useful function in the network. The amount of learning experience is defined as a 
sum of magnitudes of the error et. The sum of error magnitudes since Unit j was 
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restarted is given by Cj. Once this sum surpasses a maxImum, Cmax , the unit is 
again eligible for restarting. Thus, Unit j is restarted when 

Uj . min (IVI,j 1+ IV2,j I) (3) 
JE{1 •...• 20} 

and 

Cj > Cmax . ( 4 ) 
Without a detailed search, a value of Cmax = 10 was found to result in good perfor­
mance. 

5.3 New Weights for Restarted Unit 

Say Unit j is restarted. It's input weights are set equal to the current input vector, 
x, the one for which the output of the network was in error. One of the two output 
weights of Unit j is also modified. The output weight through which Unit j modifies 
the output of the unit corresponding to the action actually taken is set equal to the 
error, et. The other output weight is not modified. 

6 Results 

W·· }.' 

where k 

Xi, for i = 1, ... , 4, 

{ I, 
2, 

if at = -10; 
if at = 10. 

(5) 

(6) 

The pendulum is said to be balanced when 90,000 steps (1/2 hour of simulated 
time) have elapsed without failure. After every failure, the pendulum is reset to the 
center ofthe track with a zero angle (straight up) and zero velocities. Performance is 
judged by the average number of failures before the pendulum is balanced. Averages 
were taken over 30 runs. Each run consists of choosing initial values for the hidden 
units' weights from a uniform distribution from 0 to 1, then training the net until 
the pendulum is balanced for 90,000 steps or a maximum number of 50,000 failures 
is reached. 

To determine the effect of restarting, we ccmpare the performance of the Q-Iearning 
algorithm with and without restarts. Back-propagation learning rates are given by 
13 for the output units and 13h for the hidden units. 13 and 13h were optimized for the 
algorithm without restarts by testing a large number of values. The best values of 
those tried are 13 = 0.05 and 13h = 1.0. These values were used for both algorithms. 
A small number of values for the additional restart parameters were tested, so the 
restart algorithm is not optimized for this problem. 

Figure 2 is a graph of the number of steps between failures versus the number of 
failures. Each algorithm was initialized with the same hidden unit weights. Without 
restarts the pendulum is balanced for this run after 6,879 failures. With restarts it 
is balanced after 3,415 failures. 

The performances of the algorithms were averaged over 30 runs giving the following 
results. The restart algorithm balanced the pendulum in all 30 runs, within an 
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Figure 2: Learning Curves of Balancing Time Versus Failures (averaged over bins 
of 100 failures) 

average of 3,303 failures. The algorithm without restarts was unsuccessful within 
50,000 failures for two of the 30 runs. Not counting the unsuccessful runs, this 
algorithm balanced the pendulum within an average of 4,923 failures. Considering 
the unsuccessful runs, this average is 7 ,928 failures. 

In studying the timing of restarts, we observe that initially the number of restarts 
is small, due to the high variance of et in the early stages of learning. During later 
stages, we see that a single unit might be restarted many times (15 to 20) before it 
becomes more useful (at least aecording to our measure) than some other unit. 

7 Conclusion 

This first test of an algorithm for restarting hidden units in a reinforcement-learning 
paradigm led to a decrease in learning time for this task. However, much work 
remains in studying the effects of each step of the restart procedure. Many alter­
natives exist, most significantly in the method for determining the utility of hidden 
units. A significant extension of this algorithm would be to consider units with 
variable-width domains, as in Platt's RAN algorithm. 
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