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Abstract 

Within a simple test-bed, application of feed-forward neurocontrol 
for short-term planning of robot trajectories in a dynamic environ­
ment is studied. The action network is embedded in a sensory­
motoric system architecture that contains a separate world model. 
It is continuously fed with short-term predicted spatio-temporal 
obstacle trajectories, and receives robot state feedback. The ac­
tion net allows for external switching between alternative plan­
ning tasks. It generates goal-directed motor actions - subject to 
the robot's kinematic and dynamic constraints - such that colli­
sions with moving obstacles are avoided. Using supervised learn­
ing, we distribute examples of the optimal planner mapping over 
a structure-level adapted parsimonious higher order network. The 
training database is generated by a Dynamic Programming algo­
rithm. Extensive simulations reveal, that the local planner map­
ping is highly nonlinear, but can be effectively and sparsely repre­
sented by the chosen powerful net model. Excellent generalization 
occurs for unseen obstacle configurations. We also discuss the limi­
tations of feed-forward neurocontrol for growing planning horizons. 
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1 INTRODUCTION 

Global planning of goal directed trajectories subject to cluttered spatio-temporal, 
state-dependent constraints - as in the kinodynamic path planning problem (Don­
ald, 1989) considered here - is a difficult task, probably best suited for systems with 
embedded sequential behavior; theoretical insights indicate that the related prob­
lem of connectedness is of unbounded order (Minsky, 1969). However, considering 
practical situations, there is a lack of globally disposable constraints at planning 
time, due to partially unmodelled environments. The question then arises, to what 
extent feed-f )rward neurocontrol may be effective for local planning horizons. 
In this paper, we put aside problems of credit assignment, and world model identi­
fication. We focus on the complexity of representing a local version of the generic 
kinodynamic path planning problem by a feed-forward net. We investigate the 
capacity of sparse distributed planner representations to generalize from example 
plans. 

2 ENVIRONMENT AND ROBOT MODELS 

2.1 ENVIRONMENT 

The world around the robot is a two-dimensional scene, occupied by obstacles mov­
ing all in parallel to the y-axis, with randomly choosen discretized x-positions, and 
with a continuous velocity spectrum. The environment's state is given by a list 
reporting position (Xi,Yi) E (X,Y), X E {0, ... ,8}, Y = [y-,y+], and velocity 
(0, Vi) ; Vi E [v- ,v+] of each obstacle i. The environment dynamics is given by 

(1) 

Obstacles are inserted at random positions, and with random velocities, into some 
region distant from the robot's workspace. At each time step, the obstacle's posi­
tions are updated according to eqn.(l), so that they will cross the robot's workspace 
some time. 

2.2 ROBOT 

We consider a point-like robot of unit mass, which is confined to move within some 
interval along the x-axis. Its state is denote~. by (xr,xr) E (X,X);X = {-1,0, I}. 
At each time step, a motor command u E X = {-I, 0, I} is applied to the robot. 
The robot dynamics is given by 

Xr(t + 1) 
zr(t + 1) 

= xr(t) + u(t) 
= zr(t) + xr(t + 1) . (2) 

Notice that the set of admissible motor commands depends on the present robot 
state. With these settings, the robot faces a fluctuating number of obstacles crossing 
its baseline, similar to the situation of a pedestrian who wants to cross a busy street 
(Figure 1). 
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Figure 1: Obstacles Crossing the Robot's Workspace 

3 SYSTEM ARCHITECTURE AND FUNCTIONALITY 

Adequate modeling of the perception-action cycle is of decisive importance for the 
design of intelligent reactive systems. We partition the overall system into two 
modules: an active Perception Module (PM) with built-in capabilities for short-term 
environment forecasts, and a subsequent Action Module (AM) for motor command 
generation (Figure 2). Either module may be represented by a 'classical' algorithm, 
or by a neural net. PM is fed with a sensory data stream reporting the observed 
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Figure 2: Sensory-Motoric System Architecture 

dynamic scene of time-varying obstacle positions. From this, it assembles a spatio-
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temporal internal representation of near-future obstacle trajectories. At each time 
step t, it actnalizes the incidence function 

occupancy(x, k) = { _11 (x = Xi and - s < Yi(t + k) < s) for any obstacle i 
otherwise, 

where s is some safety margin accounting for the y-extension of obstacles. The 
incidence furlction is defined on a spatio-temporal cone-shaped cell array, based at 
the actual rc bot position: 

Ix - xr(t)1 ~ k ; k = I, . '" HORIZON (3) 

The opening angle of this cone-shaped region is given by the robot's speed limit 
(here: one cell per time step). Only those cells that can potentially be reached by 
the robot within the local prediction-/planning horizon are thus represented by PM 
(see Figure 3). The functionality of AM is to map the current PM representation to 
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Figure 3: Space-Time Representation with Solution Path Indicated 

an appropriate robot motor command, taking into account the present robot state, 
and paying regard to the currently specified long-term goal. Firstly, we realize 
the optimal AM by the Dynamic Programming (DP) algorithm (Bellman, 1957). 
Secondly, we use supervised learning to distribute optimal planning examples over 
a neural network. 

4 DYNAMIC PROGRAMMING SOLUTION 

Given PM's internal representation at time t, the present robot state, and some 
specification of the desired long-term goal, DP determines a sequence of motor 
commands minimizing some cost functional. Here we use 

HORIZON 
cost{u(t), ... ,u(t+HORIZON)} = L:: (xr(t + k) - xo)2 + c u(t + k)2 , (4) 

k=O 
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with xr(t + k) given by the dynamics eqns.(2) (see solution path in Figure 3). By 
xo, we denote the desired robot position or long-term goal. Deviations from this 
position are punished by higher costs, just as are costly accelerations. Obstacle 
collisions are excluded by restricting search to admissible cells (x, X, t + k )admiuible 

in phase-space-time (obeying occupancy(x,t+k) = -1). Training targets for timet 
are constituted by the optimal present motor actions uopt(t), for which the minimum 
is attained in eqn.( 4). For cases with degenerated optimal solutions, we consistently 
break symmetry, in order to obtain a deterministic target mapping. 

5 NEURAL ACTION MODEL 

For neural motor command generation, we use a single layer of structure-adapted 
parsimonious Higher Order Neurons (parsiHONs) (Fahner, I992a, b), computing 
outputs Yi E [0,1] ; i = 1,2,3. Target values for each single neuron are given by 
yfe& = 1, if motor-action i is the optimal one, otherwise, yfe& = 0. As input, each 
neuron receives a bit-vector x = Xl, ... ,XN E {-I, I}N, whose components specify 
the values of PM's incidence function, the binary encoded robot state, and some 
task bits encoding the long-term goal. Using batch training, we maximize the log­
likelihood criterion for each neuron independently. For recall, the motor command 
is obtained by a winner-takes-all decision: the index of the most active neuron yields 
the motor action applied. 
Generally, atoms for nonlinear interactions within a bipolar-input HON are mod­
elled by input monomials of the form 

N 

1]Ot = II xji ; Cl' = Cl'l ... Cl'N E n = {O, I}N . 
i=1 

(5) 

Here, the ph bit of Cl' is understood as exponent of Xi. It is well known that the 
complete set of monomials forms a basis for Boolean functions expansions (Kar­
povski, 1976). Combinatorial growth of the number of terms with increasing input 
dimension renders allocation of the complete basis impractical in our case. More­
over, an action model employing excessive numbers of basis functions would overfit 
trainig data, thus preventing generalization. 
We therefore use a structural adaptation algorithm, as discussed in detail in (Fah­
ner, I992a, b), for automatic identification and inclusion of a sparse set of relevant 
nonlinearities present in the problem. In effect, this algorithm performs a guided 
stochastic search exploring the space of nonlinear interactions by means of an in­
tertwined process of weight adaptation, and competition between nonlinear terms. 
The parsiHON model restricts the number of terms used, not their orders: instead 
of the exponential size set {1]Ot : Cl' En}, just a small subset {1]{3 : /3 ESC n} of 
terms is used within a parsimonious higher order function expansion 

ye,t(x) = f [2: w{31]{3(X)] ; w{3 E 1R . 
{3ES 

(6) 

He~'e, f denotes the usual sigmoid transfer function. 
parsiHONs with high degrees of sparsity were effectively trained and emerged robust 
generalization for difficult nonlinear classification benchmarks (Fahner, I992a, b). 
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6 SIMULATION RESULTS 

We performed extensive simulations to evaluate the neural action network's capabil­
ities to generalize from learned optimal planning examples. The planner was trained 
with respect to two alternative long-term goals: XO = 0, or XO = 8. Firstly, optimal 
DP planner actions were assembled over about 6,000 time steps of the simulated en­
vironment (fa.irly crowded with moving obstacles), for both long-term goals. At each 
time step, optimd motor commands were computed for all 9 x 3 = 27 available robot 
states. From this bunch of situations we excluded those, where no collision-free 
path existed within the planning horizon considered: (HORIZON = 3). A total 
of 115,000 admissible training situations were left, out of the 6,000 x 27 = 162,000 
one's generated. Thus, out of the full spectrum of robot states which were checked 
every time step, just about 19 states were not doomed to collide, at an average. 
These findings corrobate the difficulty of the choosen task. 
Many repetitions are present in these accumulated patterns, reflecting the statistics 
of the simulated environment. We collapsed the original training set by remov­
ing repeated patterns, providing the learner with more information per pattern: a 
working data base containing about 20.000 different patterns was left. 
Input to the neural action net consisted of a bit-vector of length N = 21, where 
3 + 5 + 7 bits encode PM's internal representation (cone size in Figure 3), 6 bits 
encode the robot's state, and a single task bit reports the desired goal. For train­
ing, we delimited single neuron learning to a maximum of 1000 epochs. In most 
cases, this was sufficient for successful training set classification for any of the three 
neurons (Yi < .8 for yfe& = 0, and Yi > .8 for yfe& = 1 ; i = 1,2,3). But even if 
some training patterns were misclassified by individual motor neurons, additional 
robustness stemming from the winner-takes-all decision rescued fault-free recall of 
the voting community. To test generalization of the neural action model, we par-
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Figure 4: Generalization Behavior 
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titioned the data base into two parts, one containing training patterns, the other 
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containing new test patterns, not present in the training set. Several runs were 
performed with parsiHONs of sizes between 83 and 110 terms. Results for varying 
training set sizes are depicted in Figure 4. Test error decreases with increasing 
training set size, and falls as low as about one percent for about 12,000 training 
patterns. It continues to decrease for larger training sets. These findings corrobate 
that the trained architectures emerge sensible robust generalization. 
To get some insight into the complexity of the mapping, we counted the number 
of terms which carry a given order. The resulting distribution has its maximum at 
order 3, exhibits many terms of orders 4 and higher, and finally decreases to zero for 
oruers exceeding 10 (Figure 5). This indicates that the planner mapping considered 
is highly nonlinear. 
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Figure 5: Distribution of Orders 
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7 DISCUSSION AND CONCLUSIONS 

Sparse representation of planner mappings is desirable when representation of com­
plete policy look-up tables becomes impracticable (Bellman's "curse of dimensional­
ity"), or when computation of plans becomes expensive or conflicting with real-time 
requirements. For these reasons, it is urgent to investigate the capacity of neurocon­
trol for effective distributed representation and for robust generalization of planner 
mappmgs. 
Here, we focused on a new type of shallow feed-forward action network for the local 
kinodynamic trajectory planning problem. An advantage with feed- forward nets 
is their low-latency recall, which is an important requirement for systems acting in 
rapidly changing environments. However, from theoretical considerations concern­
ing the related problem of connectedness with its inherent serial character (Minsky, 
1969), the planning problem under focus is expected to be hard for feed-forward 
nets. Even for rather local planning horizons, complex and nonlinear planner map-
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pings must be expected. Using a powerful new neuron model that identifies the 
relevant nonlinearities inherent in the problem, we determined extremely parsimo­
nious architectures for representation of the planner mapping. This indicates that 
some compact set of important features determines the optimal plan. The adapted 
networks emerged excellent generalization. 
We encourage use of feed-forward nets for difficult local planning tasks, if care is 
taken that the models support effective representation of high-order nonlinearities. 
For growing planning horizons, it is expected that feed-forward neurocontrol will 
run into limitatioml (Werbos, 1992). The simple test-bed presented here would al­
low for inser tion a.Dd testing also of other net models and system designs, including 
recurrent networks. 
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