
Learning Spatio-Temporal Planning from
a Dynamic Programming Teacher:

Feed-Forward N eurocontrol for Moving
Obstacle A voidance

Gerald Fahner *
Department of Neuroinformatics

University of Bonn
Romerstr. 164

W -5300 Bonn 1, Germany

Rolf Eckmiller
Department of Neuroinformatics

University of Bonn
Romerstr. 164

W-5300 Bonn 1, Germany

Abstract

Within a simple test-bed, application of feed-forward neurocontrol
for short-term planning of robot trajectories in a dynamic environ­
ment is studied. The action network is embedded in a sensory­
motoric system architecture that contains a separate world model.
It is continuously fed with short-term predicted spatio-temporal
obstacle trajectories, and receives robot state feedback. The ac­
tion net allows for external switching between alternative plan­
ning tasks. It generates goal-directed motor actions - subject to
the robot's kinematic and dynamic constraints - such that colli­
sions with moving obstacles are avoided. Using supervised learn­
ing, we distribute examples of the optimal planner mapping over
a structure-level adapted parsimonious higher order network. The
training database is generated by a Dynamic Programming algo­
rithm. Extensive simulations reveal, that the local planner map­
ping is highly nonlinear, but can be effectively and sparsely repre­
sented by the chosen powerful net model. Excellent generalization
occurs for unseen obstacle configurations. We also discuss the limi­
tations of feed-forward neurocontrol for growing planning horizons.

*Tel.: (228)-550-364

342

FAX: (228)-550-425 e-mail: gerald@nero.uni-bonn.de

Learning Spatio-Temporal Planning from a Dynamic Programming Teacher 343

1 INTRODUCTION

Global planning of goal directed trajectories subject to cluttered spatio-temporal,
state-dependent constraints - as in the kinodynamic path planning problem (Don­
ald, 1989) considered here - is a difficult task, probably best suited for systems with
embedded sequential behavior; theoretical insights indicate that the related prob­
lem of connectedness is of unbounded order (Minsky, 1969). However, considering
practical situations, there is a lack of globally disposable constraints at planning
time, due to partially unmodelled environments. The question then arises, to what
extent feed-f)rward neurocontrol may be effective for local planning horizons.
In this paper, we put aside problems of credit assignment, and world model identi­
fication. We focus on the complexity of representing a local version of the generic
kinodynamic path planning problem by a feed-forward net. We investigate the
capacity of sparse distributed planner representations to generalize from example
plans.

2 ENVIRONMENT AND ROBOT MODELS

2.1 ENVIRONMENT

The world around the robot is a two-dimensional scene, occupied by obstacles mov­
ing all in parallel to the y-axis, with randomly choosen discretized x-positions, and
with a continuous velocity spectrum. The environment's state is given by a list
reporting position (Xi,Yi) E (X,Y), X E {0, ... ,8}, Y = [y-,y+], and velocity
(0, Vi) ; Vi E [v- ,v+] of each obstacle i. The environment dynamics is given by

(1)

Obstacles are inserted at random positions, and with random velocities, into some
region distant from the robot's workspace. At each time step, the obstacle's posi­
tions are updated according to eqn.(l), so that they will cross the robot's workspace
some time.

2.2 ROBOT

We consider a point-like robot of unit mass, which is confined to move within some
interval along the x-axis. Its state is denote~. by (xr,xr) E (X,X);X = {-1,0, I}.
At each time step, a motor command u E X = {-I, 0, I} is applied to the robot.
The robot dynamics is given by

Xr(t + 1)
zr(t + 1)

= xr(t) + u(t)
= zr(t) + xr(t + 1) . (2)

Notice that the set of admissible motor commands depends on the present robot
state. With these settings, the robot faces a fluctuating number of obstacles crossing
its baseline, similar to the situation of a pedestrian who wants to cross a busy street
(Figure 1).

344 Fahner and Eckmiller

dyno.MiC
obsto.cles

o

o

robot

gOo.l

Figure 1: Obstacles Crossing the Robot's Workspace

3 SYSTEM ARCHITECTURE AND FUNCTIONALITY

Adequate modeling of the perception-action cycle is of decisive importance for the
design of intelligent reactive systems. We partition the overall system into two
modules: an active Perception Module (PM) with built-in capabilities for short-term
environment forecasts, and a subsequent Action Module (AM) for motor command
generation (Figure 2). Either module may be represented by a 'classical' algorithm,
or by a neural net. PM is fed with a sensory data stream reporting the observed

sens~
infor~

Perception
Moclule

lon9-
terM
goal

roloot
state

JJJJ
interno.l

representa tion

Action
Moclule

JJ
Motor

COMMancl

Figure 2: Sensory-Motoric System Architecture

dynamic scene of time-varying obstacle positions. From this, it assembles a spatio-

Learning Spatio-Temporal Planning from a Dynamic Programming Teacher 345

temporal internal representation of near-future obstacle trajectories. At each time
step t, it actnalizes the incidence function

occupancy(x, k) = { _11 (x = Xi and - s < Yi(t + k) < s) for any obstacle i
otherwise,

where s is some safety margin accounting for the y-extension of obstacles. The
incidence furlction is defined on a spatio-temporal cone-shaped cell array, based at
the actual rc bot position:

Ix - xr(t)1 ~ k ; k = I, . '" HORIZON (3)

The opening angle of this cone-shaped region is given by the robot's speed limit
(here: one cell per time step). Only those cells that can potentially be reached by
the robot within the local prediction-/planning horizon are thus represented by PM
(see Figure 3). The functionality of AM is to map the current PM representation to

x I,

,. 4Ir / T

/ r2J i--';"

(~o 0

[3]-[3]-~ 0

~@] 0

x ...

~ ./ [5J
,~I---I£J T

T ,
o 1 2 3

Figure 3: Space-Time Representation with Solution Path Indicated

an appropriate robot motor command, taking into account the present robot state,
and paying regard to the currently specified long-term goal. Firstly, we realize
the optimal AM by the Dynamic Programming (DP) algorithm (Bellman, 1957).
Secondly, we use supervised learning to distribute optimal planning examples over
a neural network.

4 DYNAMIC PROGRAMMING SOLUTION

Given PM's internal representation at time t, the present robot state, and some
specification of the desired long-term goal, DP determines a sequence of motor
commands minimizing some cost functional. Here we use

HORIZON
cost{u(t), ... ,u(t+HORIZON)} = L:: (xr(t + k) - xo)2 + c u(t + k)2 , (4)

k=O

346 Fahner and Eckmiller

with xr(t + k) given by the dynamics eqns.(2) (see solution path in Figure 3). By
xo, we denote the desired robot position or long-term goal. Deviations from this
position are punished by higher costs, just as are costly accelerations. Obstacle
collisions are excluded by restricting search to admissible cells (x, X, t + k)admiuible

in phase-space-time (obeying occupancy(x,t+k) = -1). Training targets for timet
are constituted by the optimal present motor actions uopt(t), for which the minimum
is attained in eqn.(4). For cases with degenerated optimal solutions, we consistently
break symmetry, in order to obtain a deterministic target mapping.

5 NEURAL ACTION MODEL

For neural motor command generation, we use a single layer of structure-adapted
parsimonious Higher Order Neurons (parsiHONs) (Fahner, I992a, b), computing
outputs Yi E [0,1] ; i = 1,2,3. Target values for each single neuron are given by
yfe& = 1, if motor-action i is the optimal one, otherwise, yfe& = 0. As input, each
neuron receives a bit-vector x = Xl, ... ,XN E {-I, I}N, whose components specify
the values of PM's incidence function, the binary encoded robot state, and some
task bits encoding the long-term goal. Using batch training, we maximize the log­
likelihood criterion for each neuron independently. For recall, the motor command
is obtained by a winner-takes-all decision: the index of the most active neuron yields
the motor action applied.
Generally, atoms for nonlinear interactions within a bipolar-input HON are mod­
elled by input monomials of the form

N

1]Ot = II xji ; Cl' = Cl'l ... Cl'N E n = {O, I}N .
i=1

(5)

Here, the ph bit of Cl' is understood as exponent of Xi. It is well known that the
complete set of monomials forms a basis for Boolean functions expansions (Kar­
povski, 1976). Combinatorial growth of the number of terms with increasing input
dimension renders allocation of the complete basis impractical in our case. More­
over, an action model employing excessive numbers of basis functions would overfit
trainig data, thus preventing generalization.
We therefore use a structural adaptation algorithm, as discussed in detail in (Fah­
ner, I992a, b), for automatic identification and inclusion of a sparse set of relevant
nonlinearities present in the problem. In effect, this algorithm performs a guided
stochastic search exploring the space of nonlinear interactions by means of an in­
tertwined process of weight adaptation, and competition between nonlinear terms.
The parsiHON model restricts the number of terms used, not their orders: instead
of the exponential size set {1]Ot : Cl' En}, just a small subset {1]{3 : /3 ESC n} of
terms is used within a parsimonious higher order function expansion

ye,t(x) = f [2: w{31]{3(X)] ; w{3 E 1R .
{3ES

(6)

He~'e, f denotes the usual sigmoid transfer function.
parsiHONs with high degrees of sparsity were effectively trained and emerged robust
generalization for difficult nonlinear classification benchmarks (Fahner, I992a, b).

Learning Spatia-Temporal Planning from a Dynamic Programming Teacher 347

6 SIMULATION RESULTS

We performed extensive simulations to evaluate the neural action network's capabil­
ities to generalize from learned optimal planning examples. The planner was trained
with respect to two alternative long-term goals: XO = 0, or XO = 8. Firstly, optimal
DP planner actions were assembled over about 6,000 time steps of the simulated en­
vironment (fa.irly crowded with moving obstacles), for both long-term goals. At each
time step, optimd motor commands were computed for all 9 x 3 = 27 available robot
states. From this bunch of situations we excluded those, where no collision-free
path existed within the planning horizon considered: (HORIZON = 3). A total
of 115,000 admissible training situations were left, out of the 6,000 x 27 = 162,000
one's generated. Thus, out of the full spectrum of robot states which were checked
every time step, just about 19 states were not doomed to collide, at an average.
These findings corrobate the difficulty of the choosen task.
Many repetitions are present in these accumulated patterns, reflecting the statistics
of the simulated environment. We collapsed the original training set by remov­
ing repeated patterns, providing the learner with more information per pattern: a
working data base containing about 20.000 different patterns was left.
Input to the neural action net consisted of a bit-vector of length N = 21, where
3 + 5 + 7 bits encode PM's internal representation (cone size in Figure 3), 6 bits
encode the robot's state, and a single task bit reports the desired goal. For train­
ing, we delimited single neuron learning to a maximum of 1000 epochs. In most
cases, this was sufficient for successful training set classification for any of the three
neurons (Yi < .8 for yfe& = 0, and Yi > .8 for yfe& = 1 ; i = 1,2,3). But even if
some training patterns were misclassified by individual motor neurons, additional
robustness stemming from the winner-takes-all decision rescued fault-free recall of
the voting community. To test generalization of the neural action model, we par-

" ...
II> .­.­..
a.

'0
II>
" .,
" .,
e
'" o
II>
0-.. ...
C
II>

" ...
II> a.

6

a)-HON 0
c 9)-HON +

9)-HON C

93-HON)(

5 llO-HON '" llO-HON •
UO-HON 0

+

3
o

2
o

+

o)(

+

t
..

O~----~----~----~----~----~----~----~~
o 2 4 6 a

5ize of tra~nin9 set
10 12
"1000

Figure 4: Generalization Behavior

14

titioned the data base into two parts, one containing training patterns, the other

348 Fahner and Eckmiller

containing new test patterns, not present in the training set. Several runs were
performed with parsiHONs of sizes between 83 and 110 terms. Results for varying
training set sizes are depicted in Figure 4. Test error decreases with increasing
training set size, and falls as low as about one percent for about 12,000 training
patterns. It continues to decrease for larger training sets. These findings corrobate
that the trained architectures emerge sensible robust generalization.
To get some insight into the complexity of the mapping, we counted the number
of terms which carry a given order. The resulting distribution has its maximum at
order 3, exhibits many terms of orders 4 and higher, and finally decreases to zero for
oruers exceeding 10 (Figure 5). This indicates that the planner mapping considered
is highly nonlinear.

'" u
c
(1/
::I
IT
(II
(II

>, .,
....
(II ..

o .25 r------~----_,_----__,_----_..,.-___,

averaged over several ne~~orks ~

0.2

0.15

0.1

0.05

o~------~----~~~ ______ -+ ________ ~ __ ~
o 5 10

order
15

Figure 5: Distribution of Orders

20

7 DISCUSSION AND CONCLUSIONS

Sparse representation of planner mappings is desirable when representation of com­
plete policy look-up tables becomes impracticable (Bellman's "curse of dimensional­
ity"), or when computation of plans becomes expensive or conflicting with real-time
requirements. For these reasons, it is urgent to investigate the capacity of neurocon­
trol for effective distributed representation and for robust generalization of planner
mappmgs.
Here, we focused on a new type of shallow feed-forward action network for the local
kinodynamic trajectory planning problem. An advantage with feed- forward nets
is their low-latency recall, which is an important requirement for systems acting in
rapidly changing environments. However, from theoretical considerations concern­
ing the related problem of connectedness with its inherent serial character (Minsky,
1969), the planning problem under focus is expected to be hard for feed-forward
nets. Even for rather local planning horizons, complex and nonlinear planner map-

Learning Spatio-Temporal Planning from a Dynamic Programming Teacher 349

pings must be expected. Using a powerful new neuron model that identifies the
relevant nonlinearities inherent in the problem, we determined extremely parsimo­
nious architectures for representation of the planner mapping. This indicates that
some compact set of important features determines the optimal plan. The adapted
networks emerged excellent generalization.
We encourage use of feed-forward nets for difficult local planning tasks, if care is
taken that the models support effective representation of high-order nonlinearities.
For growing planning horizons, it is expected that feed-forward neurocontrol will
run into limitatioml (Werbos, 1992). The simple test-bed presented here would al­
low for inser tion a.Dd testing also of other net models and system designs, including
recurrent networks.

Acknowledgements

This work was supported by Federal Ministry of Research and Technology (BMFT­
project SENROB), grant 01 IN 105 AID)

References

E. B. Baum, F. Wilczek (1987). Supervised Learning of Probability Distributions
by Neural Networks. In D. Anderson (Ed.), Neural Information Processing Systems,
52-61. Denver, CO: American Institute of Physics.

R. E. Bellman (1957). Dynamic Programming. Princeton University Press.

B. Donald (1989). Near-Optimal Kinodynamic Planning for Robots With Coupled
Dynamic Bounds, Proc. IEEE Int. Conf. on Robotics and Automation.

G. Fahner, N. Goerke, R. Eckmiller (1992). Structural Adaptation of Boolean
Higher Order Neurons: Superior Classification with Parsimonious Topologies, Proc.
ICANN, Brighton, UK.

G. Fahner, R. Eckmiller. Structural Adaptation of Parsimonious Higher Order
Classifiers, subm. to Neural Networks.

M. G. Karpovski (1976). Finite Orthogonal Series in the Design of Digital Devices.
New York: John Wiley & Sons.

M. Minsky, S. A. Papert (1969). Perceptrons. Cambridge: The MIT Press.

P. Werbos (1992). Approximate Dynamic Programming for Real-Time Control and
Neural Modeling. In D. White, D. Sofge (eds.) Handbook of Intelligent Control,
493-525. New York: Van Nostrand.

