
Reverse TDNN: An Architecture for Trajectory
Generation

Patrice Simard
AT &T Bell Laboratories
101 Crawford Corner Rd

Holmdel, NJ 07733

Abstract

Yann Le Cun
AT&T Bell Laboratories
101 Crawford Corner Rd

Holmdel, NJ 07733

The backpropagation algorithm can be used for both recognition and gen­
eration of time trajectories. When used as a recognizer, it has been shown
that the performance of a network can be greatly improved by adding
structure to the architecture. The same is true in trajectory generation.
In particular a new architecture corresponding to a "reversed" TDNN is
proposed. Results show dramatic improvement of performance in the gen­
eration of hand-written characters. A combination of TDNN and reversed
TDNN for compact encoding is also suggested.

1 INTRODUCTION

Trajectory generation finds interesting applications in the field of robotics, automa­
tion, filtering, or time series prediction. Neural networks, with their ability to learn
from examples, have been proposed very early on for solving non-linear control prob­
lems adaptively. Several neural net architectures have been proposed for trajectory
generation, most notably recurrent networks, either with discrete time and exter­
nalloops (Jordan, 1986), or with continuous time (Pearlmutter, 1988). Aside from
being recurrent, these networks are not specifically tailored for trajectory genera­
tion. It has been shown that specific architectures, such as the Time Delay Neural
Networks (Lang and Hinton, 1988), or convolutional networks in general, are better
than fully connected networks at recognizing time sequences such as speech (Waibel
et al., 1989), or pen trajectories (Guyon et al., 1991). We show that special archi­
tectures can also be devised for trajectory generation, with dramatic performance
improvement.

579

580 Simard and Le Cun

Two main ideas are presented in this paper. The first one rests on the assumption
that most trajectory generation problems deal with continuous trajectories. Fol­
lowing (Pearlmutter, 1988), we present the "differential units", in which the total
input to the neuron controls the em rate of change (time derivative) of that unit
state, instead of directly controlling its state. As will be shown the "differential
units" can be implemented in terms of regular units.

The second idea comes from the fact that trajectories are usually come from a
plan, resulting in the execution of a "motor program". Executing a complete motor
program will typically involve executing a hierarchy of sub-programs, modified by
the information coming from sensors. For example drawing characters on a piece
of paper involves deciding which character to draw (and what size), then drawing
each stroke of the character. Each stroke involves particular sub-programs which
are likely to be common to several characters (straight lines of various orientations,
curved lines, loops ...). Each stroke is decomposed in precise motor patterns. In
short, a plan can be described in a hierarchical fashion, starting from the most
abstract level (which object to draw), which changes every half second or so, to
the lower level (the precise muscle activation patterns) which changes every 5 or
10 milliseconds. It seems that this scheme can be particularly well embodied by
an "Oversampled Reverse TDNN". a multilayer architecture in which the states
of the units in the higher layers are updated at a faster rate than the states of
units in lower layers. The ORTDNN resembles a Subsampled TDNN (Bottou et al.,
1990)(Guyon et al., 1991), or a subsampled weight-sharing network (Le Cun et al.,
1990a), in which all the connections have been reversed, and the input and output
have been interchanged. The advantage of using the ORTDNN, as opposed to a
table lookup, or a memory intensive scheme, is the ability to generalize the learned
trajectories to unseen inputs (plans). With this new architecture it is shown that
trajectory generation problems of large complexity can be solved with relatively
small resources.

2 THE DIFFERENTIAL UNITS

In a time continuous network, the forward propagation can be written as:

8x(t)
T{jt = -x(t) + g(wx(t» + I(t) (1)

where x(t) is the activation vector for the units, T is a diagonal matrix such that
ni is the time constant for unit i, It is the input vector at time t, w is a weight
matrix such that Wij is the connection from unit j to unit i, and 9 is a differentiable
(multi-valued) function.

A reasonable discretization of this equation is:

(2)

where ~t is the time step used in the discretization, the superscript t means at time
t~t (i.e. xt = x(t~t». Xo is the starting point and is a constant. t ranges from 0
to M, with 10 = o.

Reverse TDNN: An Architecture for Trajectory Generarion 581

The cost function to be minimized is:

t=M
E = ~ L: (stxt - dt)T (stxt - dt)

t=1
(3)

Where Dt is the desired output, and st is a rectangular matrix which has a 0 if
the corresponding x: is unconstrained and 1 otherwise. Each pattern is composed
of pairs (It, Dt) for t E [1..M]. To minimize equation 3 with the constraints given
by equation 2 we express the Lagrage function (Le Cun, 1988):

t=M t=M-l
L = ~ L:(Stxt_Dt)(Stxt_Dt)T + L: (bt+l)T(_xt+l+xt+LltT-l(_xt+g(wxt)+It»)

t=1 t=O
(4)

Where bt+l are Lagrange multipliers (for t E [1..MD. The superscript T means that
the corresponding matrix is transposed. If we differentiate with respect to xt we
get:

(:~) T = 0 = (sti' _ d') _ ii' + ;;'+1 _ ~tT-1ii'+1 _ ~tT-1wT g'(wi')ii'+1 (5)

For t E [l..M - 1] and 8~'t, = 0 = (S'xM - DM) - bM for the boundary condition.
g' a diagonal matrix containing the derivatives of 9 (g'(wx)w is the jacobian of g).
From this an update rule for bt can be derived:

bM (SMXM _ dM)
(S'xt - dt) + (1 - LltT-l)bt+l + LltT-lwTyrg(wxt)bt+l for t E [1..M - 1]

(6)
This is the rule used to compute the gradient (backpropagation). If the Lagrangian
is differentiated with respect to Wij, the standard updating rule for the weight is
obtained:

oL t=M-l_
ow .. = LltT- 1 L: b;+lxjg;(L: wil:xi)

~ t=1 l:
(7)

If the Lagrangian is differentiated with respect to T, we get:

t=M-l
oL _ T- 1 ~ (-t+l -t)b-t+l --- L.J x -x
oT t=O

(8)

From the last two equations, we can derived a learning algorithm by gradient descent

(9)

(10)

where 7]w and 7]T are respectively the learning rates for the weights and the time
constants (in practice better results are obtained by having different learning rates
7]Wjj and 7]Tii per connections). The constant 7]T must be chosen with caution

582 Simard and Le Cun

Figure 1: A backpropagation implementation of equation 2 for a two units network
between time t and t + 1. This figure rer.eats itself vertically for every time step
from t = 0 to t = M. The quantities x /1, x~+l, d~ = -x~ + gl (wxt) + If and
d~ = -x~ + g2(wxt) + n are computed with linear units.

since if any time constants tii were to become less than one, the system would
be unstable. Performing gradient descent in Tl instead of in tii is preferable for

II

numerical stability reasons.

Equation 2 is implemented with a feed forward backpropagation network. It should
first be noted that this equation can be written as a linear combination of xt (the
activation at the previous time), the input, and a non-linear function g of wx'.
Therefore, this can be implemented with two linear units and one nonlinear unit
with activation function g. To keep the time constraint, the network is "unfolded"
in time , with the weights shared from one time step to another. For instance a
simple two fully connected units network with no threshold can be implemented
as in Fig. 1 (only the layer between time t and t + 1 is shown). The network
repeats itself vertically for each time step with the weights shared between time
steps. The main advantage of this implementation is that all equations 6, 7 and 8
are implemented implicitly by the back-propagation algorithm.

3 CHARACTER GENERATION: LEARNING TO
GENERATE A SINGLE LETTER

In this section we describe a simple experiment designed to 1) illustrate how tra­
jectory generation can be implemented with a recurrent network, 2) to show the
advantages of using differential units instead of the traditional non linear units and
3) to show how the fully connected architecture (with differential units) severly
limits the learning capacity of the network. The task is to draw the letter "A" with

0Jtpu12

Reverse TDNN: An Architecture for Trajectory Generation 583

Target drawing

1.25

.15

.25

-.25

-.15

-1.25 ~ _______ _

-1.25 -.15 -.25 .25 .15 1.25

OulpAl

NetworK drawing
1.25

.15

.25

- .25

-.15

-1.25"__ ______ _

-1.25 -.75 - . 25 . 25 . 15 1.25

Ou1pJtO

Output trajectories

1.25

.15

.25

- . 25

-.15
-1.25 _______ _

o 15 30 45 60 15 '0105120135

1.25

.15

.25

-.25

-.15
-1.25'--______ _

o 15)0 45 60 15 '0 105120135

1.25

.15

.25

-.25

- . 15

OulpAl Time

Figure 2: Top left: Trajectory representing the letter "A". Bottom left: Trajectory
produced by the network after learning. The dots correspond to the target points of
the original trajectory. The curve is produced by drawing output unit 2 as a function
of output unit 1, using output unit 0 for deciding when the pen is up or down. Right:
Trajectories of the three output units (pen-up/pen-down, X coordinate of the pen
and Y coordinate of the pen) as a function of time. The dots corresponds to the
target points of the original trajectory.

a pen. The network has 3 output units, two for the X and Y position of the pen,
and one to code whether the pen is up or down. The network has a total 21 units,
no input unit, 18 hidden units and 3 output units. The network is fully connected.

Character glyphs are obtained from a tablet which records points at successive
instants of time. The data therefore is a sequence of triplets indicating the time,
and the X and Y positions. When the pen is up, or if there are no constraint for
some specific time steps (misreading of the tablet), the activation of the unit is left
unconstrained. The letter to be learned is taken from a handwritten letter database
and is displayed in figure 2 (top left) .

The letter trajectory covers a maximum of 90 time stamps. The network is unfolded
135 steps (10 unconstrained steps are left at the begining to allow the network to
settle and 35 additional steps are left at the end to monitor the network activity).
The learning rate 'f/w is set to 1.0 (the actual learning rate is per connection and is
obtained by dividing the global learning rate by the fanin to the destination unit,
and by dividing by the number of connections sharing the same weight). The time
constants are set to 10 to produce a smooth trajectory on the output. The learning
rate 'f/T is equal to zero (no learning on the time constants). The initial values for
the weights are picked from a uniform distribution between -1 and +1.

584 Simard and Le Cun

The trajectories fo units 0, 1 and 2 are shown in figure 2 (right). The top graphs
represent the state of the pen as a function of time. The straight lines are the desired
positions (1 means pen down, -1 means pen up). The middle and bottom graphs
are the X and Y positions of the pen respectively. The network is unconstrained
after time step 100. Even though the time constants are large, the output units
reach the right values before time step 10. The top trajectory (pen-up/pen-down),
however, is difficult to learn with time constants as large as 10 because it is not
smooth.

The letter drawn by the network after learning is shown in figure 2 (left bottom).
The network successfully learned to draw the letter on the fully connected network.
Different fixed time constants were tried. For small time constant (like 1.0), the
network was unable to learn the pattern for any learning rate TJw we tried. This
is not surprising since the (vertical) weight sharing makes the trajectories very
sensitive to any variation of the weights. This fact emphasizes the importance of
using differential units. Larger time constants allow larger learning rate for the
weights. Of course, if those are too large, fast trajectories can not be learned.

The error can be further improved by letting the time constant adapt as well.
However the gain in doing so is minimal. If the learning rate TJT is small, the gain
over 'TJT = 0 is negligible. If TJT is too big, learning becomes quickly unstable.

This simulation was done with no input, and the target trajectories were for the
drawing of a single letter. In the next section, the problem is extended to that of
learning to draw multiple letters, depending on an input vector.

4 LEARNING TO GENERATE MULTIPLE LETTERS:
THE REVERSE TDNN ARCHITECTURE

In a first attempt, the fully connected network of the previous section was used to
try to generate the eight first letters of the alphabet. Eight units were used for
the input, 3 for the output, and various numbers of hidden units were tried. Every
time, all the units, visible and hidden, were fully interconnected. Each input unit
was associated to one letter, and the input patterns consisted of one +1 at the
unit corresponding to the letter, and -1/7 for all other input units. No success was
achieved for all the set of parameters which were tried. The error curves reached
plateaus, and the letter .glyphs were not recognizable. Even bringing the number of
letter to two (one "A" and one "B") was unsuccessful. In all cases the network was
acting like it was ignoring its input: the activation of the output units were almost
identical for all input patterns. This was attributed to the network architecture.

A new kind of architecture was then used, which we call" Oversampled Reverse
TDNN" because of its resemblance with a Subsampled TDNN with input and out­
put interchanged. Subsampled TDNN have been used in speech recognition (Bottou
et al., 1990), and on-line character recognition (Guyon et al., 1991). They can be
seen one-dimensional versions of locally-connected, weight sharing networks (Le
Cun, 1989)(Le Cun et al., 1990b). Time delay connections allow units to be con­
nected to unit at an earlier time. Weight sharing in time implements a convolution
of the input layer. In the Subsampled TDNN, the rate at which the units states
are updated decreases gradually with the layer index. The subsampling provides

Reverse TDNN: An Architecture for Trajectory Generation 585

t=13

t=5

Input Hidden1 Hidden 2 Output

Figure 3: Architecture of a simple reverse TDNN. Time goes from bottom to top,
data flows from left to right. The left module is the input and has 2 units. The
next module (hidden!) has 3 units and is undersampled every 4 time steps. The
following module (hidden2) has 4 units and is undersampled every 2 time steps. The
right module is the output, has 3 units and is not undersampled. All modules have
time delay connections from the preceding module. Thus the hidden! is connected
to hidden2 over a window of 5 time steps, and hidden2 to the output over a window
of 3 time steps. For each pattern presented on the 2 input units, a trajectory of 8
time steps is produced by the network on each of the 3 units of the output.

586 Simard and Le Cun

:l£l':~"':~:LR' ·:LL·· .~l£~ -. r 1-. -. -. J/ -. -.
-I ~ ~ ~ -I -I

... ·1 _J •• I ... 1 _J •• I ... -. - ••• I -I -. -J •• I ... -I _J •• I ... -. - ••• I , , , 'il' '~ '. I • • • .. •

l~A!il~: TtK~ L.
..... _. _. • • I _I _. _. • • I ... _. _. • • I _I •• -. • • I _I _. _. • • I _I _ I -. • • I

• • • '.. -. .' I '.

'~'kL'LQ'i£'~'LK" :.. ~ ,:.~ .. : ...:. ,:, ,:.. t?:: .~.) .. ,
:l C :~ T :~ ~ :f \ t:l ~ tt I :l \;
:L2-,:LL:~::WL:~:LL

... -I _ ••• I ... -I -J •• I ... 1 oJ •• I -I -I _ ••• I 1 _ ••• I ... -, -J •• I

111L
Figure 4: Letters drawn by the reverse TDNN network after 10000 iteration of
learning.

a gradual reduction of the time resolution. In a reverse TDNN the subsampling
starts from the units from the output (which have no subsampling) toward the in­
put. Equivalently, each layer is oversampled when compared to the previous layer.
This is illustrated in Figure 3 which shows a small reverse TDNN. The input is
applied to the 2 units in the lower left. The next layer is unfolded in time two steps
and has time delay connections toward step zero of the input. The next layer after
this is unfolded in time 4 steps (with again time delay connections), and finally the
output is completely unfolded in time. The advantage of such an architecture is
its ability to generate trajectories progressively, starting with the lower frequency
components at each layer. This parallels recognition TDNN's which extract features
progressively. Since the weights are shared between time steps, the network on the
figures has only 94 free weights.

With the reverse TDNN architecture, it was easy to learn the 26 letters of of the
alphabet. We found that the learning is easier if all the weights are initialized to 0
except those with the shortest time delay. As a result, the network initially only sees
its fastest connections. The influence of the remaining connections starts at zero
and increase as the network learns. The glyphs drawn by the network after 10,000
training epochs are shown in figure 4. To avoid ambiguity, we give subsampling
rates with respect to the output, although it would be more natural to mention
oversampling rates with respect to the input. The network has 26 input units, 30
hidden units in the first layer subsampled at every 27 time steps, 25 units at the next
layer subsampled at every 9 time steps, and 3 output units with no subsampling.
Every layer has time delay connections from the previous layer, and is connected
with 3 different updates of the previous layer. The time constants were not subject

Reverse TDNN: An Architecture for Trajectory Generation 587

to learning and were initialized to 10 for the x and y output units, and to 1 for the
remaining units. No effort was made to optimize these values.

Big initial time constants prevent the network from making fast variations on the
output units and in general slow down the learning process. On the other hand,
small time constants make learning more difficult. The correct strategy is to adapt
the time constants to the intrinsic frequencies of the trajectory. With all the time
constants equal to one, the network was not able to learn the alphabet (as it was
the case in the experiment of the previous section). Good results are obtained with
time constants of 10 for the two x-y output units and time constants of 1 for all
other units.

5 VARIATIONS OF THE ORTDNN

Many variations of the Oversampled Reverse TDNN architecture can be imagined.
For example, recurrent connections can be added: connections can go from right to
left on figure 3, as long as they go up. Recurrent connections become necessary when
information needs to be stored for an arbitrary long time. Another variation would
be to add sensor inputs at various stages of the network, to allow adjustment of the
trajectory based on sensor data, either on a global scale (first layers), or locally (last
layers). Tasks requiring recurrent ORTDNN's and/or sensor input include dynamic
robot control or speech synthesis.

Another interesting variation is an encoder network consisting of a Subsampled
TDNN and an Oversmapled Reverse TDNN connected back to back. The Sub­
sampled TDNN encodes the time sequence shown on its input, and the ORTDNN
reconstructs an time sequence from the output of the TDNN. The main application
of this network would be the compact encoding of time series. This network can be
trained to reproduce its input on its output (auto-encoder), in which case the state
of the middle layer can be used as a compact code of the input sequence.

6 CONCLUSION

We have presented a new architecture capable of learning to generate trajectories
efficiently. The architecture is designed to favor hierarchical representations of tra­
jectories in terms of subtasks.

The experiment shows how the ORTDNN can produce different letters as a function
of the input. Although this application does not have practical consequences, it
shows the learning capabilities of the model for generating trajectories. The task
presented here was particularly difficult because there is no correlation between
the patterns. The inputs for an A or a Z only differ on 2 of the 26 input units.
Yet, the network produces totally different trajectories on the output units. This is
promising since typical neural net application have very correlated patterns which
are in general much easier to learn.

References

Bottou, L., Fogelman, F., Blanchet, P., and Lienard, J. S. (1990). Speaker inde-

588 Simard and Le Cun

pendent isolated digit recognition: Multilayer perceptron vs Dynamic Time
Warping. Neural Networks, 3:453-465.

Guyon, I., Albrecht, P., Le Cun, Y., Denker, J. S., and W., H. (1991). design of a
neural network character recognizer for a touch terminal. Pattern Recognition,
24(2):105-119.

Jordan, M. I. (1986). Serial Order: A Parallel Distributed Processing Approach.
Technical Report ICS-8604, Institute for Cognitive Science, University of Cal­
ifornia at San Diego, La Jolla, CA.

Lang, K. J. and Hinton, G. E. (1988). A Time Delay Neural Network Architecture
for Speech Recognition. Technical Report CMU-cs-88-152, Carnegie-Mellon
University, Pittsburgh PA.

Le Cun, Y. (1988). A theoretical framework for Back-Propagation. In Touretzky,
D., Hinton, G., and Sejnowski, T., editors, Proceedings of the 1988 Connec­
tionist Models Summer School, pages 21-28, CMU, Pittsburgh, Pa. Morgan
Kaufmann.

Le Cun, Y. (1989). Generalization and Network Design Strategies. In Pfeifer, R.,
Schreter, Z., Fogelman, F., and Steels, L., editors, Connectionism in Perspec­
tive, Zurich, Switzerland. Elsevier. an extended version was published as a
technical report of the University of Toronto.

Le Cun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard,
W., and Jackel, L. D. (1990a). Handwritten digit recognition with a back­
propagation network. In Touretzky, D., editor, Advances in Neural Information
Processing Systems 2 (NIPS *89) , Denver, CO. Morgan Kaufman.

Le Cun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W.,
and Jackel, 1. D. (1990b). Back-Propagation Applied to Handwritten Zipcode
Recognition. Neural Computation.

Pearlmutter, B. (1988). Learning State Space Trajectories in Recurrent Neural
Networks . Neural Computation, 1(2).

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. (1989). Phoneme
Recognition Using Time-Delay Neural Networks. IEEE Transactions on Acous­
tics, Speech and Signal Processing, 37:328-339.

