
Software for ANN training on a Ring Array Processor 

Phil Kohn, Jeff Bilmes, Nelson Morgan, James Beck 
International Computer Science Institute, 
1947 Center St., Berkeley CA 94704, USA 

Abstract 

Experimental research on Artificial Neural Network (ANN) algorithms requires 
either writing variations on the same program or making one monolithic program 
with many parameters and options. By using an object-oriented library, the size 
of these experimental programs is reduced while making them easier to read, 
write and modify. An efficient and flexible realization of this idea is Connection­
ist Layered Object-oriented Network Simulator (CLONES). CLONES runs on 
UNIX1 workstations and on the 100-1000 MFLOP Ring Array Processor (RAP) 
that we built with ANN algorithms in mind. In this report we describe CLONES 
and show how it is implemented on the RAP. 

1 Overview 

As we continue to experiment with Artificial Neural Networks (ANNs) to generate phoneme 
probabilities for speech recognition (Bourlard & Morgan, 1991), two things have become 
increasingly clear: 

1. Because of the diversity and continuing evolution of ANN algorithms, the program­
ming environment must be both powerful and flexible. 

2. These algorithms are very computationally intensive when applied to large databases 
of training patterns. 

Ideally we would like to implement and test ideas at about the same rate that we come up 
with them. We have approached this goal both by developing application specific parallel 

lUNIX is a trademark of AT&T 
781 



782 Kahn, Bilrnes, Morgan, and Beck 

~ 
~ 

RAP9jstam 

~~mID 
SPERTBowd 

~~~L7 

System Perfonnance Languages Supported 

Assem C c++ Sather pSather 

SparcStation 2 2MFLOP -/ -/ -/ -/ -/ 

Desktop RAP + 
lOOMFLOP 

Sun 4/330 Host 

-I -I -I -I 
Nctwmcd RAP 

(1-10 Boards) 
1 GFLOP 

SparcSlation + 
lOOP if if if ~ SPERT Board 

CNS-l System 200 GOP ~ ~ ~ ~ ~ 

-/ Completed ~ In Design <,...-__ L_in_kC_r_c_om-::pa_lI_o b_IC ___ > 
Figure 1: Hardware and software configurations 

S 
o 
u 
r 
c 
c 

C 
o 
m 
p 
• t 
i 
b 
I 
c 

hardware, the Ring Array Processor (RAP) (Morgan et al., 1990; Beck, 1990; Morgan et al., 
1992), and by building an object-oriented software environment, the Connectionist Layered 
Object-oriented Network Simulator (CLONES) (Kohn, 1991). By using an object-oriented 
library, the size of experimental ANN programs can be greatly reduced while making them 
easier to read, write and modify. CLONES is written in C++ and utilizes libraries previously 
written in C and assem bIer. 

Our ANN research currently encompasses two hardware platforms and several languages. 
shown in Figure 1. Two new hardware platforms, the SPERT board (Asanovic et al., 1991) 
and the CNS-l system are in design (unfilled check marks), and will support source code 
compatibility with the existing machines. The SPERT design is a custom VLSI parallel 
processor installed on an SBUS card plugged into a SPARC workstation. Using variable 
precision fixed point arithmetic, a single SPERT board will have performance comparable 
to a 10 board RAP system with 40 processors. The CNS-l system is based on multiple 
VLSI parallel processors interconnected by high speed communication rings. 

Because the investment in software is generally large, we insiston source level compatibility 
across hardware platforms at the level of the system libraries. These libraries include matrix 
and vector classes that free the user from concern about the hardware configuration. It is 
also considered important to allow routines in different languages to be linked together. 
This includes support for Sather, an object-oriented language that has been developed at 
ICSI for workstations. The parallel version of Sather, called pSather, will be supported on 



Sottware for ANN training on a Ring Array Processor 783 

theCNS-l. 

CLONES is seen as the ANN researcher's interface to this multiplatform, multi language 
environment. Although CLONES is an application written specifically for ANN algorithms, 
it's object-orientation gives it the ability to easily include previously developed libraries. 
CLONES currently runs on UNIX workstations and the RAP; this paper focuses on the 
RAP implementation. 

2 RAP hardware 

The RAP consists of cards that are added to a UNIX host machine (currently a VME based 
Sun SPARe). A RAP card has four 32 MFlop Digital Signal Processor (DSP) chips (TI 
TMS32OC30), each with its own local 256KB or 1MB of fast static RAM and 16MB of 
DRAM. 

Instead of sharing memory, the processors communicate on a high speed ring that shifts 
data in a single machine cycle. For each board, the peak transfer rate between 4 nodes 
is 64 million words/sec (256 Mbytes/second). This is a good balance to the 64 million 
multiply-accumulates per second (128 MFLOPS) peak performance of the computational 
elements. 

Up to 16 of these boards can be interconnected and used as one Single Program operating 
on Multiple Data stream (SPMD) machine. In this style of parallel computation, all the 
processors run the same program and are doing the same operations to different pieces of the 
same matrix or vector 2. The RAP can run other styles of parallel computation, including 
pipelines where each processor is doing a different operation on different data streams. 
However, for fully connected back-propagation networks, SPMD parallelism works well 
and is also much easier to program since there is only one flow of control to worry about. 

A reasonable design for networks in which all processors need all unit outputs is a single 
broadcast bus. However, this design is not appropriate for other related algorithms such 
as the backward phase of the back-propagation learning algorithm. By using a ring, back­
propagation can be efficiently parallelized without the need to have the complete weight 
matrix on all processors. The number of ring operations required for each complete matrix 
update cycle is of the same order as the number of units, not the square of the number of 
units. It should also be noted that we are using a stochastic or on-line learning algorithm. 
The training examples are not di viding among the processors then the weights batch updated 
after a complete pass. All weights are updated for each training example. This procedure 
greatly decreases the training time for large redundant training sets since more steps are 
being taken in the weight-space per training example. 

We have empirically derived formulae that predict the performance improvement on back­
propagation training as a function of the number of boards. Theoretical peak performance is 
128 MFlops/board, with sustained performance of 30-90% for back-propagation problems 
of interest to us. Systems with up to 40 nodes have been tested, for which throughputs 

1'he hardware does not automatically keep the processors in lock step; for example, they may 
become out of sync because of branches conditioned on the processor's node number or on the 
data. However, when the processors must communicate with each other through the ring, hardware 
synchronization automatically occurs. A node that attempts to read before data is ready. or to write 
when there is already data waiting. will stop executing until the data can be moved. 



784 Kahn, Bilrnes, Morgan, and Beck 

of up to 574 Million Connections Per Second (MCPS) have been measured, as well as 
learning rates of up to 106 Million Connection Updates Per Second (MCUPS) for training. 
Practical considerations such as workstation address space and clock skew restrict current 
implementations to 64 nodes, but in principle the architecture scales to about 16,000 nodes 
for back-propagation. 

We now have considerable experience with the RAP as a day-to-day computational tool for 
our research. With the aid of the RAP hardware and software, we have done network training 
studies that would have over a century on a UNIX workstation such as the SPARCstation-2. 
We have also used the RAP to simulate variable precision arithmetic to guide us in the 
design of higher performance hardware such as SPERT. 

The RAP hardware remains very flexible because of the extensive use of programmable 
logic arrays. These parts are automatically downloaded when the host machine boots up. 
By changing the download files, the functionality of the communications ring and the host 
interface can be modified or extended without any physical changes to the board. 

3 RAP software 

The RAP DSP software is built in three levels (Kohn & Bilmes, 1990; Bilmes & Kohn, 
(990). At the lowest level are hand coded assembler routines for matrix, vector and ring 
operations. Many standard matrix and vector operations are currently supported as well 
as some operations specialized for efficient back-propagation. These matrix and vector 
routines do not use the communications ring or split up data among processing nodes. 
There is also a UNIX compatible library including most standard C functions for file, math 
and string operations. All UNIX kernel calls (such as file input or output) cause requests 
to be made to the host SPARC over the VMEbus. A RAP dremon process running under 
UNIX has all of the RAP memory mapped into its virtual address space. It responds to the 
RAP system call interrupts (from the RAP device driver) and can access RAP memory with 
a direct memory copy function or assignment statement. 

An intermediate level consists of matrix and vector object classes coded in C++. A 
programmer writing at this level or above can program the RAP as if it were a conventional 
serial machine. These object classes divide the data and processing among the available 
processing nodes, using the communication ring to redistribute data as needed. For example, 
to multiply a matrix by a vector, each processor would have its own subset of the matrix 
rows that must be multiplied. This is equivalent to partitioning the output vector elements 
among the processors. If the complete output vector is needed by all processors, a ring 
broadcast routine is called to redistribute the part of the output vector from each processor 
to all the other processors. 

The top level of RAP software is the CLONES environment. CLONES is an object-oriented 
library for constructing, training and utilizing connectionist networks. It is designed to 
run efficiently on data parallel computers as well as uniprocessor workstations. While 
efficiency and portability to parallel computers are the primary goals, there are several 
secondary design goals: 

1. minimize the learning curve for using CLONES; 

2. minimize the additional code required for new experiments; 

3. maximize the variety of artificial neural network algorithms supported; 



Software for ANN training on a Ring Array Processor 785 

4. allow heterogeneous algorithms and training procedures to be interconnected and 
trained together; 

5. allow the trained network to be easily embedded into other programs. 

The size of experimental ANN programs is greatly reduced by using an object-oriented 
library; at the same time these programs are easier to read, write and evolve. 

Researchers often generate either a proliferation of versions of the same basic program, 
or one giant program with a large number of options and many potential interactions and 
side-effects. Some simulator programs include (or worse, evolve) their own language 
for describing networks. We feel that a modem object-oriented language (such as C++) 
has all the functionality needed to build and train ANNs. By using an object-oriented 
design, we attempt to make the most frequently changed parts of the program very small 
and well localized. The parts that rarely change are in a centralized library. One of the 
many advantages of an object-oriented library for experimental work is that any part can 
be specialized by making a new class of object that inherits the desired operations from a 
library class. 

4 CLONES overview 

To make CLONES easier to learn, we restrict ourselves to a subset of the many features 
of C++. Excluded features include multiple inheritance, operator overloading (however, 
function overloading is used) and references. Since the multiple inheritance feature of C++ 
is not used, CLONES classes can be viewed as a collection of simple inheritance trees. 
This means that all classes of objects in CLONES either have no parent class (top of a class 
tree) or inherit the functions and variables of a single parent class. 

CLONES consists of a library of C++ classes that represent networks (Net), their com­
ponents (Net-part) and training procedures. There are also utility classes used during 
training such as: databases of training data (Database), tables of parameters and arguments 
(Param), and perfonnance statistics (Stats). Database and Param do not inherit from any 
other class. Their class trees are independent of the rest of CLONES and each other. The 
Stats class inherits from Net-behavior. 

The top level of the CLONES class tree is a class called NeLbehavior. It defines function 
interfaces for many general functions including file save or restore and debugging. It also 
contains behavior functions that are called during different phases of running or training a 
network. For example, there are functions that are called before or after a complete training 
run (pre_training, posLtraining), before or after a pass over the database (pre_epoch, 
post-epoch) and before or after a forward or backward run of the network (pre_forw-pass, 
post1orw_pass, pre_back_pass, posLback_pass). The Net, NeLpart and Stats classes 
inherit from this class. 

All network components used to construct ANNs are derived from the two classes Layer 
and Connect. Both of these inherit from class NeLpart. A CLONES network can be 
viewed as a graph where the nodes are Layer objects and the arcs are Connect objects. 
Each Connect connects a single input Layer with a single output Layer. A Layer holds 
the data for a set of units (such as an activation vector), while a Connect transforms the 
data as it passes between Layers. Data flows along Connects between the pair of Layers 
by calling forw_propagate (input to output) or back_propagate (output to input) behavior 



786 Kahn, Bilrnes, Morgan, and Beck 

functions in the Connect object. 

CLONES does not have objects that represent single units (or artificial neurons). Insteadt 
Layer objects are used to represent a set of units. Because arrays of units are passed 
down to the lowest level routinest most of the computation time is focused into a few small 
assembly coded loops that easily fit into the processor instruction cache. Time spent in all 
of the levels of control code that call these loops becomes less significant as the size of the 
Layer is increased. 

The Layer class does not place any restrictions on the representation of its internal infor­
mation. For examplet the representation for activations may be a floating point number 
for each unit (AnalogJayer)t or it may be a set of unit indicest indicating which units 
are active (BinaryJayer). AnalogJayer and BinaryJayer are built into the CLONES 
library as subclasses of the class Layer. The AnalogJayer class specifies the repre­
sentation of activationst but it still leaves open the procedures that use and update the 
activation array. BP ...analogJayer is a subclass of AnalogJayer that specify these pro­
cedures for the back-propagation algorithm. Subclasses of AnalogJayer may also add 
new data structures to hold extra internal state such as the error vector in the case of 
BP ...analogJayer. The BP -AnalogJaycr class has subclasses for various transfer func­
tions such as BP ...sigmoidJayer and BP Jinear Jayer. 

Layer classes also have behavior functions that are called in the course of running the 
network. For examplet one of these functions (pre_forw-propagate) initializes the Layer 
for a forward passt perhaps by clearing its activation vector. After all of the connections 
coming into it are runt another Layer behavior function (postJorw_propagate) is called 
that computes the activation vector from the partial results left by these connections. For 
examplet this function may apply a transfer function such as the sigmoid to the accumulated 
sum of all the input activations. 

These behavior functions can be changed by making a subclass. BP ...analogJayer leaves 
open the activation transfer function (or squashing function) and its derivative. Subclasses 
define new transfer functions to be applied to the activations. A new class of back­
propagation layer with a customized transfer function (instead of the default sigmoid) can 
be created with the following C++ code: 

My_new_BP_layer_class(int number_of_units) 
: BP_analog_layer(number_of_units)i II constructor 

void transfer (Fvec *activation) { 
1* apply forward transfer function to my activation vector *1 

void d_transfer(Fvec *activation, Fvec *err) 
1* apply backward error transfer to err (given activation) *1 

} i 

A Connect class includes two behavior functions: one that transforms activations from the 
incoming Layer into partial results in the outgoing Layer (forw-propagate) and one that 
takes outgoing errors and generates partial results in the incoming Layer (back-propagate). 



Software for ANN training on a Ring Array Processor 787 

The structure of a partial result is part of the Layer class. The subclasses of Connect include: 
Bus_connect (one to one), Full_connect (all to all) and Sparse_connect (some to some). 

Each subclass of Connect may contain a set of internal parameters such as the weight 
matrix in a BP JulLconnect. Subclasses of Connect also specify which pairs of Layer 
subclasses can be connected. When a pair of Layer objects are connected, type checking 
by the C++ compiler insures that the input and output Layer subclasses are supported by 
the Connect object. 

In order to do its job efficiently, a Connect must know something about the internal 
representation of the layers that are connected. By using C++ overloading, the Connect 
function selected depends not only on the class of Connect, but also on the classes of 
the two layers that are connected. Not all Connect classes are defined for all pairs of 
Layer classes. However, Connects that convert between Layer classes can be utilized to 
compensate for missing functions. 

CLONES allows the user to view layers and connections much like tinker-toy wheels and 
rods. ANNs are built up by creating Layer objects and passing them to the create functions 
of the desired Connect classes. Changing the interconnection pattern does not require any 
changes to the Layer classes or objects and vice-versa. 

At the highest level, a Net object delineates a subset of a network and controls its training. 
Operations can be performed on these subsets by calling functions on their Net objects. The 
Layers of a Net are specified by calling one of new_inputJayer, new_hidden.Jayer, or 
new_outputJayer on the Net object for each Layer. Given the Layers, the Connects that 
belong to the Net are deduced by the Net-order objects (see below). Layer and Connect 
objects can belong to any number of Nets. 

The Net labels all of its Layers as one of input, output or hidden. These labels are 
used by the NeLorder objects to determine the order in which the behavior functions of 
the NeLparts are called. For example, a Net object contains NeLorder objects called 
forward_pass_order and backward_pass_order that control the execution sequence for a 
forward or backward pass. The Net object also has functions that call a function by the 
same name on all of its component parts (for example set.Jearning-.rate). 

When a Net-order object is built it scans the connectivity of the Net. The rules that relate 
topology to order of execution are centralized and encapsulated in subclasses of NeLorder. 
Changes to the structure of the Net are localized to just the code that creates the Layers 
and Connects; one does not need to update separate code that contains explict knowledge 
about the order of evaluation for running a forward or backward pass. 

The training procedure is divided into a series of steps, each of which is a call to a function 
in the Net object. At the top level, calling run_training on a Net performs a complete 
training run. In addition to calling pre_training, posLtraining behavior functions, it calls 
run_epoch in a loop until the the nextJearning-.rate function returns zero. The run_epoch 
function calls run_forward and run_backward. 

At a lower level there are functions that interface the database(s) of the Net object to the 
Layers of the Net. For example, seLinput sets the activations of the input Layers for a 
given pattern number of the database. Another of these sets the error vector of the output 
layer (seLerror). Some of these functions, such as is_correct evaluate the performance of 
the Net on the current pattern. 



788 Kahn, Bilmes, Morgan, and Beck 

In addition to database related functions, the Net object also contains useful global variables 
for all of its components. A pointer to the Net object is always passed to all behavior 
functions of its Layers and Connects when they are called. One of these variables is a 
Param object that contains a table of parameter names, each with a list of values. These 
parameters usually come from the command line and/or parameter files. Other variables 
include: the current pattern, the correct target output, the epoch number, etc. 

5 Conclusions 

CLONES is a useful tool for training ANNs especially when working with large training 
databases and networks. It runs efficiently on a variety of parallel hardware as well as on 
UNIX workstations. 

Acknowledgements 

Special thanks to Steve Renals for daring to be the first CLONES user and making significant 
contributions to the design and implementation. Others who provided valuable input to 
this work were: Krste Asanovi~, Steve Omohundro, Jerry Feldman, Heinz Schmidt and 
Chuck Wooters. Support from the International Computer Science Institute is gratefully 
acknowledged. 

References 

Asanovi~, K., Beck, J., Kingsbury, B., Kohn, P., Morgan, N., & Wawrzynek, J. (1991). 
SPERT: A VLIW ISIMD Microprocessor for Artificial Neural Network Computations. 
Tech. rep. TR-91-072, International Computer Science Institute. 

Beck, J. (1990). The Ring Array Processor (RAP): Hardware. Tech. rep. TR-90-048, 
International Computer Science Institute. 

Bilmes, J. & Kohn, P. (1990). The Ring Array Processor (RAP): Software Architecture. 
Tech. rep. TR-90-050, International Computer Science Institute. 

Bourlard, H. & Morgan, N. (1991). Connectionist approaches to the use of Markov models 
for continuous speech recognition. In Touretzky, D. S. (Ed.), Advances in Neural 
Information Processing Systems, Vol. 3. Morgan Kaufmann, San Mateo CA. 

Kohn, P. & Bilmes, J. (1990). The Ring Array Processor (RAP): Software Users Manual 
Version 1.0. Tech. rep. TR-90-049, International Computer Science Institute. 

Kohn, P. (1991). CLONES: Connectionist Layered Object-oriented NEtwork Simulator. 
Tech. rep. TR-91-073, International Computer Science Institute. 

Morgan, N., Beck, J., Kohn, P., Bilmes, J., Allman, E., & Beer, J. (1990). The RAP: a ring 
array processor for layered network calculations. In Proceedings IEEE International 
Conference on Application Specific Array Processors, pp. 296-308 Princeton NI. 

Morgan, N., Beck, J., Kohn, P., & Bilmes, J. (1992). Neurocomputing on the RAP. In 
Przytula, K. W. & Prasanna, V. K. (Eds.), Digital Parallellmplemencations of Neural 
Networks. Prentice-Hall, Englewood Cliffs NJ. 


