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ABSTRACT 

Because eye muscles never cocontract and do not deal with external 
loads, one can write an equation that relates motoneuron firing rate to 
eye position and velocity - a very uncommon situation in the CNS. 
The semicircular canals transduce head velocity in a linear manner by 
using a high background discharge rate, imparting linearity to the 
premotor circuits that generate eye movements. This has allowed 
deducing some of the signal processing involved, including a neural 
network that integrates. These ideas are often summarized by block 
diagrams. Unfortunately, they are of little value in describing the 
behavior of single neurons - a fmding supported by neural network 
models. 

1 INTRODUCTION 
The neural networks in our studies are quite simple. They differ from other applications 
in that they attempt to model real neural subdivisions of the oculomotor system which 
have been extensively studied with microelectrodes. Thus, we can ask the extent to 
which neural networks succeed in describing the behavior of hidden units that is already 
known. A major benefit of using neural networks in the oculomotor system is to 
illustrate clearly the shortcomings of block diagram models which tell one very little 
about what one may expect if one pokes a microelectrode inside one of its boxes. 
Conversely, single unit behavior is so loosely coupled to system behavior that, although 
the simplicity of the oculomotor system allows the relationships to be understood, one 
fears that, in a more complicated system, the behavior of single (hidden) units will give 
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little information about what a system is trying to do, never mind how. 

2 SIMPLIFICA TIONS IN OCUWMOTOR CONTROL 
Because it is impossible to cocontract our eye muscles and because their viscoelastic load 
never varies, it is possible to write an equation that uniquely relates the discharge rates 
of their motoneurons and the position of the load (eye position). This cannot be done in 
the case of, for example, limb muscles. Moreover, this system is well-approximated by 
a first-order, linear differential equation. Linearity comes about from the design of the 
semicircular canals, the origin of the vestibulo-ocular reflex (VOR). This reflex creates 
eye movements that compensate for head movements to stabilize the eyes in space for 
clear vision. The canals primarily transduce head velocity, neurally encoded into the 
discharge rates of its afferents. These rates modulate above and below a high 
background rate (typically 100 spikes/sec) that keeps them well away from cutoff and 
provides a wide linear range. The core of this reflex is only three neurons long and the 
canals impose their properties - linear modulation around a high background rate - onto 
all down-stream neurons including the motoneurons. 

In addition to linearity, the functions of the various oculomotor subsystems are clear. 
There is no messy stretch reflex, the muscle fibers are straight and parallel, and there is 
only one "joint." All these features combine to help us understand the premotor 
organization of oculomotor signals in the caudal pons, a system that has enjoyed much 
block-diagram modelling and now, neural network modelling. 

3 DISTRIBUTION OF OCULOMOTOR SIGNAlS 
The first application of neural networks to the oculomotor system was a study of 
Anastasio and Robinson (1989). The problem addressed concerned the convergence of 
diverse oculomotor signals in the caudal pons. There are three major oculomotor 
subsystems: the VOR; the saccadic system that causes the eyes to jump rapidly from one 
target to another; and the smooth pursuit system that allows the eyes to track a moving 
target. Each appears in the caudal pons as a veloci.ty command. The canals, via the 
vestibular nuclei, provide an eye-velocity command, Ev, for compensatory vestibular eye 
'Povements. Burst neurons in the nearby pontine reticular formation provide a signal, 
Eat for the desired eye velocity for a saccade. Purkinje cells in the cerebellum carry an 
eye-velocity signal, Ep' for pursuit eye movements. Thus, three eye-velocity commands 
converge in the region of the motoneurons. 

When one records from cells in this region one fmds a discharge rate R of: 

. . . 
R.=.. Ro + rp Ep + rvEv + r.E. (1) 

where Ro is the high background rate previously described and rp, rv and r. are 
coefficients that can assume any values, in a seemingly random way, for anyone neuron 
(e.g. Tomlinson and Robinson, 1984). Now a block-diagram model need show only the 
three velocity commands converging on the motoneurons and would not suggest the 
existence of neurons carrying complicated signals like that of Equ. (1). On the other 
hand, such behavior has a nice, messy, biological flavor. Somehow, it wOl;lld ~m oqd 
if such signals did not exist. What is clearly happening is that the signals Ep, Ev and E. 
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are being distributed over the intemeurons and then reassembled in the correct amount 
on the motoneurons. This is just a simple, specific example of distributed parallel 
processing in the nervous system. 

A neural network model is merely an explicit statement of such a distribution. Initial 
randomization of the synaptic weights followed by error-driven learning creates hidden 
units that conform to Equ. (1). We concluded that a neural network model was entirely 
appropriate for this neural system. This exercise also brought home, although in a simple 
way, the obvious, but often overlooked, message that block-diagram models can be 
misleading about how their conceptual functions are realized by neurons. 

We next examined distribution of the spatial properties of the intemeurons of the VOR 
(Anastasio and Robinson, 1990). We used only the vertical VOR to keep things simple. 
The inputs were the primary afferents of the four vertical semicircular canals that sense 
head rotations in all combinations of pitch and roll. The output layer was the four 
motoneurons of the vertical recti and oblique muscles that move the eye vertically and 
in cyclotorsion. The model was trained to perform compensatory eye movements in all 
combinations of pitch and roll. 

The sensitivity axis is that axis around which rotation of the head or eye produces 
maximum modulation in discharge rate. The sensitivity axis of a canal unit is 
perpendicular to the plane in which the canal lies. That of a motoneuron is that axis 
around which its muscle will rotate the eye. What were the sensitivity axes of the hidden 
units? 

A block diagram of the spatial manipulations of the VOR consists of matrices. The 
geometry of the canals can be described by a 3 x 3 matrix that converts a head-velocity 
vector into its neurally encoded representation on canal nerves. The geometry of the 
muscles can be described as another matrix that converts the neurally-encoded 
motoneuron vector into a physical eye-rotation vector. The brain-stem matrix describes 
how the canal neurons must project to the motoneurons (Robinson, 1982). In this 
scheme, intemeurons would have only fixed sensitivity axes laying somewhere between 
that of a canal unit and a motoneuron. In our model, however, sensitivity axes are 
distributed in the network; those of the hidden units point in a variety of directions. This 
has also been confirmed by microelectrode recordings (Fukushima et al., 1990). Thus, 
spatial aspects of transformations, just like temporal aspects, are distributed over the 
intemeurons. 

Again, block-diagrams, in this case in the form of a matrix, are misleading about what 
one will find with a microelectrode. Again, recording from single units tells one little 
about what a network is trying to do. There is much talk in motor physiology about 
coordinate systems and transformations from one to another. The question is asked 
"What coordinate system is this neuron working in?" In this example, individual hidden 
units do not behave as if they belonged to any coordinate system and this raises the 
problem of whether this is really a meaningful question. 

4 THE NEURAL INTEGRA TOR 
Muscles are largely position actuators; against a constant load, position is proportional 
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to innervation. The motoneurons of the extraocular muscles also need a signal 
proportional to desired eye position as well as velocity. Since eye-movement commands 
enter the caudal pons as eye-velocity commands. the necessary eye-position command is 
obtained by integrating the velocity signals (see Robinson. 1989. for a review). The 
location of the neural network has been discovered in the caudal pons and it is intriguing 
to speculate how it might work. Hardwired networks. based on positive feedback. have 
been proposed utilizing lateral inhibition (Cannon et a1.. 1983) and more recently a 
learning neural network (dynamic) has been proposed for the VOR (Arnold and 
Robinson. 1991). The hidden units are freely connected. the input is from two canal 
units in push-pull. the output is two motoneurons also in push-pull. which operate on the 
plant transfer function. lI(sTc + 1). (Tc is the plant time constant). to create an eye 
position which should be the time integral of the input head velocity. The error is retinal 
image slip (the difference between actual and ideal eye velocity). Its ems value over a 
trial interval is used to change synaptic weights in a steepest descent method until the 
error is negligible. To compensate the plant lag. the network must produce a 
combination output of eye velocity plus its integral. eye position. and these two signals. 
with various weights. are seen on all hidden units which. thus. look remarkably like the 
integrator neurons that we record from. 

This exercise raises several issues. The block-diagram model of this network is a box 
marked lis in parallel with the direct velocity feedforward path given the gain Tc. The 
parallel combination is (sTc + 1)/s. The zero cancels the pole of the plant leaving lis. 
so that eye position is the perfect integral of head velocity. While such a diagram is 
conceptually very useful in diagnosing disorders (Zee and Robinson. 1979). it contains 
no hint of how neurons might effect integration and so is useless in this regard. 
Moreover. Galiana and Outerbridge (1984) have pointed out. although in a more complex 
context. that a direct feedforward path of gain T c with a positive feedback path around 
it containing a model of the plant. produces exactly the same transfer function. Should 
we worry about which is correct - feedforward or feedback? Perhaps we should. but 
note that the neural network model of the integrator just described contains both feedback 
and feedforward pathways and relies on positive feedback. There is a suspicion that the 
latter network may subsume both block diagrams making questions about which is correct 
irrelevant. One thing is certain. at this level of organization. so close to the neuron level. 
block-diagrams. while having conceptual value. are not only useless but can be 
misleading if one is interested in describing real neural networks. 

Finally. how does one test a model network such as that proposed for the neural 
integrator? It involves the microcircuitry with which small sets of circumscribed cells 
talk to each other and process signals. The technology is not yet available to allow us 
to answer this question. I know of no real. successful examples. This. I believe. is a 
true roadblock in neurophysiology. If we cannot solve it. we must forever be content to 
describe what cell groups do but not how they do it. 
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