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Abstract 

Although the detection of invariant structure in a given set of input patterns is 
vital to many recognition tasks, connectionist learning rules tend to focus on 
directions of high variance (principal components). The prediction paradigm is 
often used to reconcile this dichotomy; here we suggest a more direct approach 
to invariant learning based on an anti-Hebbian learning rule. An unsupervised 
tWO-layer network implementing this method in a competitive setting learns to 
extract coherent depth information from random-dot stereograms. 

1 INTRODUCTION: LEARNING INVARIANT STRUCTURE 

Many connectionist learning algorithms share with principal component analysis (Jolliffe, 
1986) the strategy of extracting the directions of highest variance from the input. A single 
Hebbian neuron, for instance, will come to encode the input's first principal component 
(Oja and Karhunen, 1985); various forms of lateral interaction can be used to force a layer 
of such nodes to differentiate and span the principal component subspace - cf. (Sanger, 
1989; Kung, 1990; Leen, 1991), and others. The same type of representation also develops 
in the hidden layer of backpropagation autoassociator networks (Baldi and Hornik, 1989). 

However, the directions of highest variance need not always be those that yield the most 
information, or - as the case may be - the information we are interested in (Intrator, 
1991). In fact, it is sometimes desirable to extract the invariant structure of a stimulus 
instead, learning to encode those aspects that vary the least. The problem, then, is how to 
achieve this within a connectionist framework that is so closely tied to the maximization of 
variance. 
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In (FOldiak, 1991), spatial invariance is turned into a temporal feature by presenting transfor­
mation sequences within invariance classes as a stimulus. A built-in temporal smoothness 
constraint enables Hebbian neurons to learn these transformations, and hence the invariance 
classes. Although this is an efficient and neurobiologically attractive strategy it is limited 
by its strong assumptions about the nature of the stimulus. 

A more general approach is to make information about invariant structure available in the 
error signal of a supervised network. The most popular way of doing this is to require the 
network to predict the next patch of some structured input from the preceding context, as in 
(Elman, 1990); the same prediction technique can be used across space as well as time. It is 
also possible to explicitly derive an error signal from the mutual information between two 
patches of structured input (Becker and Hinton, 1992), a technique which has been applied 
to viewpoint-invariant object recognition (Zemel and Hinton, 1991). 

2 METHODS 

2.1 ANTI-HEBBIAN FEEDFORWARD LEARNING 

In most formulations of the covariance learning rule it is quietly assumed that the learning 
rate be positive. By reversing the sign of this constant in a recurrent autoassociator, Kohonen 
constructed a "novelty filter" that learned to be insensitive to familiar features in its input 
(Kohonen, 1989). More recently, such anti-Hebbian synapses have been used for lateral 
decorrelation of feature detectors (Barlow and FOldiak, 1989; Leen, 1991) as well as - in 
differential form - removal of temporal variations from the input (Mitchison, 1991). 

We suggest that in certain cases the use of anti-Hebbian feedforward connections to learn 
invariant structure may eliminate the need to bring in the heavy machinery of supervised 
learning algorithms required by the prediction paradigm, with its associated lack of neu­
robiological plausibility. Specifically, this holds for linear problems, where the stimuli lie 
near a hyperplane in the input space: the weight vector of an anti-Hebbian neuron will 
move into a direction normal to that hyperplane, thus characterizing the invariant structure. 

Of course a set of Hebbian feature detectors whose weight vectors span the hyperplane 
would characterize the associated class of stimuli just as well. The anti-Hebbian learning 
algorithm, however, provides a more efficient representation when the dimensionality of 
the hyperplane is more than half that of the input space, since less normal vectors than 
spanning vectors are required for unique characterization in this case. Since they remove 
rather than extract the variance within a stimulus class, anti-Hebbian neurons also present 
a very different output representation to subsequent layers. 

Unfortunately it is not sufficient to simply negate the learning rate of a layer of Hebbian 
feature detectors in order to turn them into working anti-Hebbian in variance detectors: 
although such a change of sign does superficially achieve the intended effect, many of the 
subtleties that make Hebb's rule work in practice do not survive the transformation. In what 
follows we address some of the problems thus introduced. 

Like the Hebb rule, anti-Hebbian learning requires weight normalization, in this case to 
prevent weight vectors from collapsing to zero. Oja's active decay rule (Oja, 1982) is a 
popular local approximation to explicit weight normalization: 

8w = TJ(xy - wy2), where y = ijjT X (1) 
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Here the first term in parentheses represents the standard Hebb rule, while the second is the 
active decay. Unfortunately, Oja's rule can not be used for weight growth in anti-Hebbian 
neurons since it is unstable for negative learning rates (ry < 0), as is evident from the 
observation that the growth/decay term is proportional to w. In our experiments, explicit 
L2-normalization of weight vectors was therefore used instead. 

Hebbian feature detectors attain maximal activation for the class of stimuli they represent. 
Since the weight vectors of anti-Hebbian invariance detectors are normal to the invariance 
class they represent, membership in that class is Signalled by a zero activation. In other 
words, linear anti-Hebbian nodes signal violations of the constraints they encode rather 
than compliance. While such an output representation can be highly desirable for some 
applications1, it is unsuitable for others, such as the classification of mixtures of invariants 
described below. 

We therefore use a symmetric activation function that responds maximally for a zero net 
input, and decays towards zero for large net inputs. More specifically, we use Gaussian 
activation functions, since these allow us to interpret the nodes' outputs as class membership 
probabilities. Soft competition between nodes in a layer can then be implemented simply 
by normalizing these probabilities (Le. dividing each output by the sum of outputs in a 
layer), then using them to scale weight changes (Nowlan, 1990). 

2.2 AN ANTI-HEBBIAN OBJECTIVE FUNCTION 

The magnitude of weight change in a Hebbian neuron is proportional to the cosine of 
the angle between input and weight vectors. This means that nodes that best represent the 
current input learn faster than those which are further away, thus encouraging differentiation 
among weight vectors. Since anti-Hebbian weight vectors are normal to the hyperplanes 
they represent, those that best encode a gi ven stimulus will experience the least change in 
weights. As a result, weight vectors will tend to clump together unless weight changes 
are rescaled to counteract this deficiency. In our experiments, this is done by the soft 
competition mechanism; here we present a more general framework towards this end. 

A simple Hebbian neuron maximizes the variance of its output y through stochastic ap­
proximation by performing gradient ascent in !y2 (Oja and Karhunen, 1985): 

8 1 2 8 
dWi ex: -- -y = y-;:;-y = XiY 

8wi 2 UWi 
(2) 

As seen above, it is not sufficient for an anti-Hebbian neuron to simply perform gradient 
descent in the same function. Instead, an objective function whose derivative has inverse 
magnitude to the above at every point is needed, as given by 

8 1 2 1 8 Xi 
dWi ex: --log(y ) = --y = -

8Wi 2 Y 8 Wi Y 
(3) 

I Consider the subsumption architecture of a hierarchical network in which higher layers only 
receive infonnation that is not accounted for by earlier layers. 
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Figure I: Possible objective functions for anti-Hebbian learning (see text). 

Unfortunately, the pole at y = 0 presents a severe problem for Simple gradient descent 
methods: the near-infinite derivatives in its vicinity lead to catastrophically large step sizes. 
More sophisticated optimization methods deal with this problem by explicitly controlling 
the step size; for plain gradient descent we suggest reshaping the objective function at the 
pole such that its partials never exceed the input in magnitude: 

8 2 2 2€XiY 
~Wi ex -8 dog(y + € ) = 2 2 ' 

Wi Y +€ 
(4) 

where € > 0 is a free parameter determining at which point the logarithmic slope is 
abandoned in favor of a quadratic function which forms an optimal trapping region for 
simple gradient descent (Figure 1). 

3 RESULTS ON RANDOM-DOT STEREOGRAMS 

In random-dot stereograms, stimuli of a given stereo disparity lie on a hyperplane whose 
dimensionality is half that of the input space plus the disparity in pixels. This is easily 
appreciated by considering that given, say, the left half-image and the disparity, one can 
predict the right half-image except for the pixels shifted in at the edge. Thus stereo 
disparities that are small compared to the receptive field width can be learned equally well 
by Hebbian and anti-Hebbian algorithms; when the disparity approaches receptive field 
width, however, anti-Hebbian neurons have a distinct advantage. 

3.1 SINGLE LAYER NETWORK: LOCAL DISPARITY TUNING 

Our training set consisted of stereo images of 5,000 frontoparallel strips at uniformly 
random depth covered densely with Gaussian features of random location, width, polarity 
and power. The images were discretized by integrating over pixel bins in order to allow for 
sub-pixel disparity acuity. Figure 2 shows that a single cluster of five anti-Hebbian nodes 
with soft competition develops near-perfect tuning curves for local stereo disparity after 
10 sweeps through this training set. This disparity tuning is achieved by learning to have 
corresponding weights (at the given disparity) be of equal magnitude but opposite sign, so 
that any stimulus pattern at that disparity yields a zero net input and thus maximal response. 
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Figure 2: Sliding window average response of first-layer nodes after presentation of 50,000 
stereograms as a function of stimulus disparity: strong disparity tuning is evident. 

iOOOOOi . . 
• soft competition ~ ~ 

clusters 

full connectivity 

• Gaussian 
nonlinearities 

left 

right 

iOOOOOl . . iOOOOOi . . 
1 ______ --------------------

II random connectivity II • anti-Hebbian 
(5/7 per half-image) learning rule 

0000000 0000000 
0000000 0000000 

Figure 3: Architecture of the network (see text) . 
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Note, however, that this type of detector suffers from false positives: input patterns that 
happen to yield near-zero net input even though they have a different stereo disparity. 
Although the individual response of a tuned node to an input pattern of the wrong disparity 
is therefore highly idiosyncratic, the sliding window average of each response with its 250 
closest neighbors (with respect to disparity) shown in Figure 2 is far more well-behaved. 
This indicates that the average activity over a number of patterns (in a "moving stereogram" 
paradigm) - or, alternatively, over a population of nodes tuned to the same disparity -
allows discrimination of disparities with sub-pixel accuracy. 

3.2 TWO-LAYER NETWORK: COHERENT DISPARITY TUNING 

In order to investigate the potential for hierarchical application of this architecture, it 
was extended to two layers as shown in Figure 3. The two first-layer clusters with non­
overlapping receptive fields extract local stereo disparity as before; their output is monitored 
by a second-layer cluster. Note that there is no backpropagation of derivatives: all three 
clusters use the same unsupervised learning algorithm. 

This network was trained on coherent input, i.e. stimuli for which the stereo disparity was 
identical across the receptive field boundary of first-layer clusters. As shown in Figure 4, 
the second layer learns to preserve the first layer's disparity tuning for coherent patterns, 
albeit in in somewhat degraded form. Each node in the second layer learns to pick out 
exactly the two corresponding nodes in the first-layer clusters, again by giving them weights 
of equal magnitude but opposite sign. 

However, the second layer represents more than just a noisy copy of the first layer: it 
meaningfully integrates coherence information from the two receptive fields. This can be 
demonstrated by testing the trained network on non-coherent stimuli which exhibit a depth 
discontinuity between the receptive fields of first-layer clusters. The overall response of 
the second layer is tuned to the coherent stimuli it was trained on (Figure 5). 

4 DISCUSSION 

Although a negation of the learning rate introduces various problems to the Hebb rule, 
feedforward anti-Hebbian networks can pick up invariant structure from the input. We 
have demonstrated this in a competitive classification setting; other applications of this 
framework are possible. We find the subsumption aspect of anti-Hebbian learning particu­
larly intriguing: the real world is so rich in redundant data that a learning rule which can 
adaptively ignore much of it must surely be an advantage. From this point of view, the 
promising first experiments we have reported here use quite impoverished inputs; one of 
our goals is therefore to extend this work towards real-world stimuli. 
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Figure 4: Sliding window average response of second-layer nodes after presentation of 
250,000 coherent stereograms as a function of stimulus disparity: disparity tuning is pre­
served in degraded form. 
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Figure 5: Sliding window average of total second-layer response to non-coherent input as 
a function of stimulus discontinuity: second layer is tuned to coherent patterns. 
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