
Active Exploration in Dynamic Environments

Sebastian B. Thrun
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
E-mail: thrun@cs.cmu.edu

Knut Moller
University of Bonn

Dept. of Computer Science
ROmerstr. 164

D-5300 Bonn, Germany

Abstract

\Vhenever an agent learns to control an unknown environment, two oppos­
ing principles have to be combined, namely: exploration (long-term opti­
mization) and exploitation (short-term optimization). Many real-valued
connectionist approaches to learning control realize exploration by ran­
domness in action selection. This might be disadvantageous when costs
are assigned to "negative experiences" . The basic idea presented in this
paper is to make an agent explore unknown regions in a more directed
manner. This is achieved by a so-called competence map, which is trained
to predict the controller's accuracy, and is used for guiding exploration.
Based on this, a bistable system enables smoothly switching attention
between two behaviors - exploration and exploitation - depending on ex­
pected costs and knowledge gain.
The appropriateness of this method is demonstrated by a simple robot
navigation task.

INTRODUCTION

The need for exploration in adaptive control has been recognized by various au­
thors [MB89, Sut90, Mo090, Sch90, BB591]. Many connectionist approaches (e.g.
[~leI89, MB89)) distinguish a random exploration phase, at which a controller is
constructed by generating actions randomly, and a subsequent exploitation phase.
Random exploration usually suffers from three major disadvantages:

• Whenever costs are assigned to certain experiences - which is the case for
various real-world t.asks such as autonomous robot learning, chemical control.
flight control etc. -, exploration may become unnecessarily expensive. Intu­
itively speaking, a child would burn itself again and again simply because it is

531

532 Thrun and Moller

world

Figure 1: The training of the model network is a system identification task. Weights
and biases of the network are estimated by gradient descent using the backpropagation
algorithm.

in its random phase .
• Random exploration is often inefficient in terms of learning time, too [Whi9l,

Thr92]. Random actions usually make an agent waste plenty of time in already
well-explored regions in state space, while other regions may still be poorly
explored. Exploration happens by chance and is thus undirected .

• Once the exploitation phase begins, learning is finished and the system is unable
to adapt to time-varying, dynamic environments.

However, more efficient exploration techniques rely on knowledge about the learn­
ing process itself, which is used for guiding exploration. Rather than selecting ac­
tions randomly, these exploration techniques select actions such that the expected
knowledge gain is maximal. In discrete domains, this may be achieved by preferring
states (or state-action pairs) that have been visited less frequently [BS90], or less
recently [Sut90], or have previously shown a high prediction error [Mo090, Sch91]i.
For various discrete deterministic domains such exploration heuristics have been
proved to prevent from exponential learning time [Thr92] (exponential in size of
the state space). However, such techniques require a variable associated with each
state-action pair, which is not feasible if states and actions are real-valued.

A novel real-valued generalization of these approaches is presented in this paper.
A so-called competence map estimates the controller's accuracy. Using this esti­
mation, the agent is driven into regions in state space with low accuracy, where
the resulting learning effect is assumed to be maximal. This technique defines a
directed exploration rule. In order to minimize costs during learning, exploration is
combined with an exploitation mechanism using selective attention, which allows
for switching between exploration and exploitation.

INDIRECT CONTROL USING FORWARD MODELS

In this paper we focus on an adaptive control scheme adopted from Jordan (JorS9]:

System identification (Fig. 1): Observing the input-output behavior of the un­
known world (environment), a model is constructed by minimizing the difference of
the observed outcome and its corresponding predictions. This is done with back­
propagation.

Action search using the model network (Fig. 2): Let an actual state sand
a goal state s* be given. Optimal actions are searched using gradient descent in
action space: starting with an initial action (e.g. randomly chosen), the next state

1 Note that these two approaches [Moo90, Sch91] are real-valued.

Active Exploration in Dynamic Environments 533

Figure 2: Using the model for optimizing actions (exploitation). Starting with some
initial action, gradient descent through the model network progressively improves actions.

s is predicted with the world model. The exploitation energy function

Eexploit (s'" - sf (s'" - s)
measures the LMS-deviation of the predicted and the desired state. Since the
model network is differentiable, gradients of EexPloit can be propagated back through
the model network. Using these gradients, actions are optimized progressively by
gradient descent in action space, minimizing Eexploit. The resulting actions exploit
the world.

THE COMPETENCE MAP

The general principle of many enhanced exploration schemes [BS90, Sut90, Mo090,
TM91, Sch91, Thr92] is to select actions such that the resulting observations are
expected to optimally improve the controller. In terms of the above control scheme,
this may be realized by driving the agent into regions in state-action space where
the accuracy of the model network is assumed to be low, and thus the knowledge
gain by visiting these regions is assumed to be high. In order to estimate the
accuracy of the model network, we introduce the notion of a competence network
[Sch91, TM91]. Basically, this map estimates some upper bound of the LMS-error
of the model network. This estimation is used for exploring the world by selecting
actions which minimize the expected competence of the model, and thus maximize
the resulting learning effect .

However, training the competence map is not as straightforward, since it is impos­
sible to exactly predict the accuracy of the model network for regions in state space
not visited for some time. The training procedure for the competence map is based
on the assumption that the error increases (and thus competence decreases) slowly
for such regions due to relearning and environmental dynamics:

1. At each time tick, backpropagation learning is applied using the last state­
action pair as input, and the observed LMS-prediction error of the model as
target value (c.f. Fig. 3), normalized to (O,Cmax) (O~cmax~l, so far we used
cmax=l).

2. For some2 randomly generated state-action pairs, the competence map is subse­
quently trained with target 1.0 (~ largest possible error cmax) [ACL +90]. This
training step establishes a heuristic, realizing the loss of accuracy in unvisited
regions: over time, the output values of the competence map increase for these
reglOns.

Actions are now selected with respect to an energy function E which combines both

2in our simulations: five - with a small learning rate

534 Thrun and Moller

world model

Figure 3: Training the competence map to predict the error of the model by gradient
descen t (see text).

exploration and exploitation:

E (I-f) . Eexplore + f· EexPloil (1)
with gain parameter f (O<f<I). Here the exploration energy

Eexplore 1 - competence(action)

is evaluated using the competence map - minimizing Eexplore is equivalent to maxi­
mizing the predicted model error. Since both the model net and the competence net
are differentiable, gradient descent in action space may be used for minimizing Eq.
(1). E combines exploration with exploitation: on the one hand minimizing Eexploil
serves to avoid costs (short-term optimization), and on the other hand minimizing
Eexplore ensures exploration (long-term optimization). r determines the portion of
both target functions - which can be viewed to represent behaviors - in the action
selection process.

Note that Cma.x determines the character of exploration: if Cma.x is large, the agent
is attracted by regions in state space which have previously shown high prediction
error. The smaller Cma.x is, the more the agent is attracted by rarely-visited regions.

EXPLORATION AND SELECTIVE ATTENTION
Clearly, exploration and exploitation are often conflicting and can hinder each other.
E.g. if exploration and exploitation pull a mobile robot into opposite directions, the
system will stay where it is. It therefore makes sense not to keep r constant during
learning, but sometimes to focus more on exploration and sometimes more on ex­
ploitation, depending on expected costs and improvements. In our approach, this is
achieved by determining the focus of attention r using the following bistable recur­
sive function which allows for smoothly switching attention between both policies.

At each step of action search, let eexploil = ~EexPloil(a) and eexplore = ~Eexplore(a)
denote the expected change of both energy functions by action a. With fC) being
a positive and monotonically increasing function3 ,

K - f·f(eexploil) - (l-r)·f(eexplore) (2)
compares the influence of action a on both energy functions under the current focus
of attention r. The new r is then derived by squashing K (with c>O):

1 r (3) 1 + e-CoK.

3We chosed f(x) = eX in our simulations.

Active Exploration in Dynamic Environments 535

goal

+
obstacle o

start

•
Figure 4: (a) Robot world - note that there are two equally good paths leading around
the obstacle. (b) Potential field: In addition to the x-y-state vector, the environment
returns for each state a potential field value (the darker the color, the larger the value).
Gradient ascent in the potential field yields both optimal paths depicted. Learning this
potential field function is part of the system identification task.

If K > 0, the learning system is in exploitation mood and r > 0.5 . Likewise, if
K < 0, the system is in exploration mood and r < 0.5. Since the actual attention
r weighs both competing energy functions, in most cases Eqs. (2) and (3) establish
two stable points (fixpoints), close to 0 and 1, respectively. Attention is switched
only if K changes its sign. The scalar c serves as stability factor : the larger cis,
the closer is r to its extremal values and the larger the switching factors r(l-r)-l
(taken from Eq. (2)).

A ROBOT NAVIGATION TASK

We now will demonstrate the benefits of active exploration using a competence map
with selective attention by a simple robot navigation example. The environment is
a 2-dimensional room with one obstacle and walls (see Fig. 4a), and x-y-states are
evaluated by a potential field function (Fig. 4b). The goal is to navigate the robot
from the start to the goal position without colliding with the obstacle or a wall.

Using a model network without hidden units for state prediction and a model with
two hidden layers (10 units with gaussian activation functions in the first hidden
layer, and 8 logistic units in the second) for potential field value prediction, we
compared the following exploration techniques - Table 1 summarizes the results:

• Pure random exploration. In Fig. 5a the best result out of 20 runs is
shown. The dark color in the middle indicates that the obstacle was touched
extremely often. Moreover, the resulting controller (exploitation phase) did
not find a path to the goal.

• Pure exploitation (see Fig. 5b). (With a bit of randomness in the beginning)
this exploration technique found one of two paths but failed in both finding the
other path and performing proper system identification. The number of crashes

536 Thrun and Moller

Figure 5: Resulting models of the potential field function. (a) Random exploration.
The dark color in the middle indicates the high number of crashes against the obstacle.
Note that the agent is restarted whenever it crashes against a wall or the obstacle - the
probability for reaching the goal is 0.0007. (b) Pure exploitation: The resulting model
is accurate along the path, but inaccurate elsewhere. Only one of two paths is identified.

Figure 6: Active exploration. (a) Resulting model of the potential field function. This
model is most accurate, and the number of crashes during training is the smallest. Both
paths are found about equally often. (b) "Typical" competence map: The arrows indicate
actions which maximize Eexplore (pure exploration) .

runs # crashes # paths found L2-model error
random exploration 10000 9993 0 2.5 %
pure exploitation 15000 11000 1 0.7 %
active exploration 15000 4000 2 0.4 %

Table 1: Results (averaged over 20 runs). The L2-model error is measured in relation to
its initial value (= 100%).

explo~ .. lion
regIOn

(a)

Active Exploration in Dynamic Environments 537

(b)

explor:a.lion
region

o
/

(c)

Figure 7: Three examples of trajectories during learning demonstrate the switching at­
tention mechanism described in the paper. Thick lines indicate exploration mode (r <0.2),
and thin lines indicate exploitation (r>o.S). The arrows mark some points where explo­
ration is switched off due to a predicted collision.

during learning was significantly smaller than with random exploration .
• Directed exploration with selective attention. Using a competence net­

work with two hidden layers (6 units each hidden layer), a proper model was
found in all simulations we performed (Fig. 6a), and the number of collisions
were the least. An intermediate state of the competence map is depicted in
Fig. 6b, and three exploration runs are shown in Fig. 7.

DISCUSSION

We have presented an adaptive strategy for efficient exploration in non-discrete
environments. A so-called competence map is trained to estimate the competence
(error) of the world model, and is used for driving the agent to less familiar regions.
In order to avoid unnecessary exploration costs, a selective attention mechanism
switches between exploration and exploitation. The resulting learning system is
dynamic in the sense that whenever one particular region in state space is preferred
for several runs, sooner or later the exploration behavior forces the agent to leave
this region. Benefits of this exploration technique have been demonstrated on a
robot navigation task.

However, it should be noted that the exploration method presented seeks to ex­
plore more or less the whole state-action space. This may be reasonable for the
above robot navigation task, but many state spaces, e.g. those typically found in
traditional AI, are too large for getting exhaustively explored even once. In order
to deal with such spaces, this method should be extended by some mechanism for
cutting off exploration in "unrelevant" regions in state-action space, which may be
determined by some notion of "relevance" .

Note that the technique presented here does not depend on the particular control
scheme at hand. E.g., some exploration techniques in the context of reinforcement

538 Thrun and Moller

learning may be found in [Sut90, BBS91], and are surveyed and compared in [Thr92].

Acknowledgements

The authors wish to thank Jonathan Bachrach, Andy Barto, Jorg Kindermann,
Long-Ji Lin, Alexander Linden, Tom Mitchell, Andy Moore, Satinder Singh, Don
Sofge, Alex Waibel, and the reinforcement learning group at CMU for interesting
and fruitful discussions. S. Thrun gratefully acknowledges the support by German
National Research Center for Computer Science (GMD) where part of the research
was done, and also the financial support from Siemens Corp.

References

[ACL +90] 1. Atlas, D. Cohn, R. Ladner, M.A. EI-Sharkawi, R.J. Marks, M.E. Aggoune,
and D.C. Park. Training connectionist networks with queries and selective
sampling. In D. Touretzky (ed.) Advances in Neural Information Processing
Systems 2, San Mateo, CA, 1990. IEEE, Morgan Kaufmann.

[BBS91] A.G. Barto, S.J. Bradtke, and S.P. Singh. Real-time learning and control using
asynchronous dynamic programming. Technical Report COINS 91-57, Depart­
ment of Computer Science, University of Massachusetts, MA, Aug. 1991.

[BS90] A.G. Barto and S.P. Singh. On the computational economics of reinforcement
learning. In D.S. Touretzky et al. (eds.), Connectionist Models, Proceedings of
the 1990 Summer School, San Mateo, CA, 1990. Morgan Kaufmann.

[Jor89] M.l. Jordan. Generic constraints on underspecified target trajectories. In
Proceedings of the First International Joint Conference on Neural Networks,
Washington, DC, IEEE TAB Neural Network Committee, San Diego, 1989.

[MB89] M.C. Mozer and J.R. Bachrach. Discovering the structure of a reactive envi­
ronment by exploration. Technical Report CU-CS-451-89, Dept. of Computer
Science, University of Colorado, Boulder, Nov. 1989.

[MeI89] B.W. Mel. Murphy: A neurally-inspired connectionist approach to learning
and performance in vision-based robot motion planning. Technical Report
CCSR-89-17 A, Center for Complex Systems Research Beckman Institute, Uni­
versity of Illinois, 1989.

[Mo090] A.W. Moore. Efficient Memory-based Learning for Robot Control. PhD thesis,
Trinity Hall, University of Cambridge, England, 1990.

[Sch90] J.H. Schmidhuber. Making the world differentiable: On using supervised learn­
ing fully recurrent neural networks for dynamic reinforcemen t learning and
planning in non-stationary environments. Technical Report, Technische Uni­
versitiit Munchen, Germany, 1990.

[Sch91] J.H. Schmidhuber. Adaptive confidence and adaptive curiosity. Technical
Report FKI-149-91, Technische Universitat Munchen, Germany 1991.

[Sut90] R.S. Sutton. Integrated architectures for learning, planning, and reacting based
on approximating dynamic programming. In Proceedings of the Seventh Inter­
national Conference on Machine Learning, June 1990.

[TM91] S.B. Thrun and K. Moller. On planning and exploration in non-discrete envi­
ronments. Technical Report 528, GMD, St.Augustin, FRG, 1991.

[Thr92] S.B. Thrun. Efficient exploration in reinforcement learning. Technical Report
CMU-CS-92-102, Carnegie Mellon University, Pittsburgh, Jan. 1992.

[Whi91] S.D. Whitehead. A study of cooperative mechanisms for faster reinforcement
learning. Technical Report 365, University of Rochester, Computer Science
Department, Rochester, NY, March 1991.

