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Abstract 

\Vhenever an agent learns to control an unknown environment, two oppos­
ing principles have to be combined, namely: exploration (long-term opti­
mization) and exploitation (short-term optimization). Many real-valued 
connectionist approaches to learning control realize exploration by ran­
domness in action selection. This might be disadvantageous when costs 
are assigned to "negative experiences" . The basic idea presented in this 
paper is to make an agent explore unknown regions in a more directed 
manner. This is achieved by a so-called competence map, which is trained 
to predict the controller's accuracy, and is used for guiding exploration. 
Based on this, a bistable system enables smoothly switching attention 
between two behaviors - exploration and exploitation - depending on ex­
pected costs and knowledge gain. 
The appropriateness of this method is demonstrated by a simple robot 
navigation task. 

INTRODUCTION 

The need for exploration in adaptive control has been recognized by various au­
thors [MB89, Sut90, Mo090, Sch90, BB591]. Many connectionist approaches (e.g. 
[~leI89, MB89)) distinguish a random exploration phase, at which a controller is 
constructed by generating actions randomly, and a subsequent exploitation phase. 
Random exploration usually suffers from three major disadvantages: 

• Whenever costs are assigned to certain experiences - which is the case for 
various real-world t.asks such as autonomous robot learning, chemical control. 
flight control etc. -, exploration may become unnecessarily expensive. Intu­
itively speaking, a child would burn itself again and again simply because it is 
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world 

Figure 1: The training of the model network is a system identification task. Weights 
and biases of the network are estimated by gradient descent using the backpropagation 
algorithm. 

in its random phase . 
• Random exploration is often inefficient in terms of learning time, too [Whi9l, 

Thr92]. Random actions usually make an agent waste plenty of time in already 
well-explored regions in state space, while other regions may still be poorly 
explored. Exploration happens by chance and is thus undirected . 

• Once the exploitation phase begins, learning is finished and the system is unable 
to adapt to time-varying, dynamic environments. 

However, more efficient exploration techniques rely on knowledge about the learn­
ing process itself, which is used for guiding exploration. Rather than selecting ac­
tions randomly, these exploration techniques select actions such that the expected 
knowledge gain is maximal. In discrete domains, this may be achieved by preferring 
states (or state-action pairs) that have been visited less frequently [BS90], or less 
recently [Sut90], or have previously shown a high prediction error [Mo090, Sch91]i. 
For various discrete deterministic domains such exploration heuristics have been 
proved to prevent from exponential learning time [Thr92] (exponential in size of 
the state space). However, such techniques require a variable associated with each 
state-action pair, which is not feasible if states and actions are real-valued. 

A novel real-valued generalization of these approaches is presented in this paper. 
A so-called competence map estimates the controller's accuracy. Using this esti­
mation, the agent is driven into regions in state space with low accuracy, where 
the resulting learning effect is assumed to be maximal. This technique defines a 
directed exploration rule. In order to minimize costs during learning, exploration is 
combined with an exploitation mechanism using selective attention, which allows 
for switching between exploration and exploitation. 

INDIRECT CONTROL USING FORWARD MODELS 

In this paper we focus on an adaptive control scheme adopted from Jordan (JorS9]: 

System identification (Fig. 1): Observing the input-output behavior of the un­
known world (environment), a model is constructed by minimizing the difference of 
the observed outcome and its corresponding predictions. This is done with back­
propagation. 

Action search using the model network (Fig. 2): Let an actual state sand 
a goal state s* be given. Optimal actions are searched using gradient descent in 
action space: starting with an initial action (e.g. randomly chosen), the next state 

1 Note that these two approaches [Moo90, Sch91] are real-valued. 
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Figure 2: Using the model for optimizing actions (exploitation). Starting with some 
initial action, gradient descent through the model network progressively improves actions. 

s is predicted with the world model. The exploitation energy function 

Eexploit (s'" - sf (s'" - s) 
measures the LMS-deviation of the predicted and the desired state. Since the 
model network is differentiable, gradients of EexPloit can be propagated back through 
the model network. Using these gradients, actions are optimized progressively by 
gradient descent in action space, minimizing Eexploit. The resulting actions exploit 
the world. 

THE COMPETENCE MAP 

The general principle of many enhanced exploration schemes [BS90, Sut90, Mo090, 
TM91, Sch91, Thr92] is to select actions such that the resulting observations are 
expected to optimally improve the controller. In terms of the above control scheme, 
this may be realized by driving the agent into regions in state-action space where 
the accuracy of the model network is assumed to be low, and thus the knowledge 
gain by visiting these regions is assumed to be high. In order to estimate the 
accuracy of the model network, we introduce the notion of a competence network 
[Sch91, TM91]. Basically, this map estimates some upper bound of the LMS-error 
of the model network. This estimation is used for exploring the world by selecting 
actions which minimize the expected competence of the model, and thus maximize 
the resulting learning effect . 

However, training the competence map is not as straightforward, since it is impos­
sible to exactly predict the accuracy of the model network for regions in state space 
not visited for some time. The training procedure for the competence map is based 
on the assumption that the error increases (and thus competence decreases) slowly 
for such regions due to relearning and environmental dynamics: 

1. At each time tick, backpropagation learning is applied using the last state­
action pair as input, and the observed LMS-prediction error of the model as 
target value (c.f. Fig. 3), normalized to (O,Cmax) (O~cmax~l, so far we used 
cmax=l). 

2. For some2 randomly generated state-action pairs, the competence map is subse­
quently trained with target 1.0 (~ largest possible error cmax ) [ACL +90]. This 
training step establishes a heuristic, realizing the loss of accuracy in unvisited 
regions: over time, the output values of the competence map increase for these 
reglOns. 

Actions are now selected with respect to an energy function E which combines both 

2in our simulations: five - with a small learning rate 
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world model 

Figure 3: Training the competence map to predict the error of the model by gradient 
descen t (see text). 

exploration and exploitation: 

E (I-f) . Eexplore + f· EexPloil (1) 
with gain parameter f (O<f<I). Here the exploration energy 

Eexplore 1 - competence( action) 

is evaluated using the competence map - minimizing Eexplore is equivalent to maxi­
mizing the predicted model error. Since both the model net and the competence net 
are differentiable, gradient descent in action space may be used for minimizing Eq. 
(1). E combines exploration with exploitation: on the one hand minimizing Eexploil 
serves to avoid costs (short-term optimization), and on the other hand minimizing 
Eexplore ensures exploration (long-term optimization). r determines the portion of 
both target functions - which can be viewed to represent behaviors - in the action 
selection process. 

Note that Cma.x determines the character of exploration: if Cma.x is large, the agent 
is attracted by regions in state space which have previously shown high prediction 
error. The smaller Cma.x is, the more the agent is attracted by rarely-visited regions. 

EXPLORATION AND SELECTIVE ATTENTION 
Clearly, exploration and exploitation are often conflicting and can hinder each other. 
E.g. if exploration and exploitation pull a mobile robot into opposite directions, the 
system will stay where it is. It therefore makes sense not to keep r constant during 
learning, but sometimes to focus more on exploration and sometimes more on ex­
ploitation, depending on expected costs and improvements. In our approach, this is 
achieved by determining the focus of attention r using the following bistable recur­
sive function which allows for smoothly switching attention between both policies. 

At each step of action search, let eexploil = ~EexPloil(a) and eexplore = ~Eexplore(a) 
denote the expected change of both energy functions by action a. With fC) being 
a positive and monotonically increasing function3 , 

K - f·f(eexploil) - (l-r)·f(eexplore) (2) 
compares the influence of action a on both energy functions under the current focus 
of attention r. The new r is then derived by squashing K (with c>O): 

1 r (3) 1 + e-CoK. 

3We chosed f(x) = eX in our simulations. 
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Figure 4: (a) Robot world - note that there are two equally good paths leading around 
the obstacle. (b) Potential field: In addition to the x-y-state vector, the environment 
returns for each state a potential field value (the darker the color, the larger the value). 
Gradient ascent in the potential field yields both optimal paths depicted. Learning this 
potential field function is part of the system identification task. 

If K > 0, the learning system is in exploitation mood and r > 0.5 . Likewise, if 
K < 0, the system is in exploration mood and r < 0.5. Since the actual attention 
r weighs both competing energy functions, in most cases Eqs. (2) and (3) establish 
two stable points (fixpoints), close to 0 and 1, respectively. Attention is switched 
only if K changes its sign. The scalar c serves as stability factor : the larger cis, 
the closer is r to its extremal values and the larger the switching factors r(l-r)-l 
(taken from Eq. (2)). 

A ROBOT NAVIGATION TASK 

We now will demonstrate the benefits of active exploration using a competence map 
with selective attention by a simple robot navigation example. The environment is 
a 2-dimensional room with one obstacle and walls (see Fig. 4a), and x-y-states are 
evaluated by a potential field function (Fig. 4b). The goal is to navigate the robot 
from the start to the goal position without colliding with the obstacle or a wall. 

Using a model network without hidden units for state prediction and a model with 
two hidden layers (10 units with gaussian activation functions in the first hidden 
layer, and 8 logistic units in the second) for potential field value prediction, we 
compared the following exploration techniques - Table 1 summarizes the results: 

• Pure random exploration. In Fig. 5a the best result out of 20 runs is 
shown. The dark color in the middle indicates that the obstacle was touched 
extremely often. Moreover, the resulting controller (exploitation phase) did 
not find a path to the goal. 

• Pure exploitation (see Fig. 5b). (With a bit of randomness in the beginning) 
this exploration technique found one of two paths but failed in both finding the 
other path and performing proper system identification. The number of crashes 
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Figure 5: Resulting models of the potential field function. (a) Random exploration. 
The dark color in the middle indicates the high number of crashes against the obstacle. 
Note that the agent is restarted whenever it crashes against a wall or the obstacle - the 
probability for reaching the goal is 0.0007. (b) Pure exploitation: The resulting model 
is accurate along the path, but inaccurate elsewhere. Only one of two paths is identified. 

Figure 6: Active exploration. (a) Resulting model of the potential field function. This 
model is most accurate, and the number of crashes during training is the smallest. Both 
paths are found about equally often. (b) "Typical" competence map: The arrows indicate 
actions which maximize Eexplore (pure exploration) . 

# runs # crashes # paths found L2-model error 
random exploration 10000 9993 0 2.5 % 
pure exploitation 15000 11000 1 0.7 % 
active exploration 15000 4000 2 0.4 % 

Table 1: Results (averaged over 20 runs). The L2-model error is measured in relation to 
its initial value (= 100%). 
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Figure 7: Three examples of trajectories during learning demonstrate the switching at­
tention mechanism described in the paper. Thick lines indicate exploration mode (r <0.2), 
and thin lines indicate exploitation (r>o.S). The arrows mark some points where explo­
ration is switched off due to a predicted collision. 

during learning was significantly smaller than with random exploration . 
• Directed exploration with selective attention. Using a competence net­

work with two hidden layers (6 units each hidden layer), a proper model was 
found in all simulations we performed (Fig. 6a), and the number of collisions 
were the least. An intermediate state of the competence map is depicted in 
Fig. 6b, and three exploration runs are shown in Fig. 7. 

DISCUSSION 

We have presented an adaptive strategy for efficient exploration in non-discrete 
environments. A so-called competence map is trained to estimate the competence 
(error) of the world model, and is used for driving the agent to less familiar regions. 
In order to avoid unnecessary exploration costs, a selective attention mechanism 
switches between exploration and exploitation. The resulting learning system is 
dynamic in the sense that whenever one particular region in state space is preferred 
for several runs, sooner or later the exploration behavior forces the agent to leave 
this region. Benefits of this exploration technique have been demonstrated on a 
robot navigation task. 

However, it should be noted that the exploration method presented seeks to ex­
plore more or less the whole state-action space. This may be reasonable for the 
above robot navigation task, but many state spaces, e.g. those typically found in 
traditional AI, are too large for getting exhaustively explored even once. In order 
to deal with such spaces, this method should be extended by some mechanism for 
cutting off exploration in "unrelevant" regions in state-action space, which may be 
determined by some notion of "relevance" . 

Note that the technique presented here does not depend on the particular control 
scheme at hand. E.g., some exploration techniques in the context of reinforcement 
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learning may be found in [Sut90, BBS91], and are surveyed and compared in [Thr92]. 
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