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Abstract 

Stochastic gradient descent is a general algorithm which includes LMS, 
on-line backpropagation, and adaptive k-means clustering as special cases. 
The standard choices of the learning rate 1] (both adaptive and fixed func­
tions of time) often perform quite poorly. In contrast, our recently pro­
posed class of "search then converge" learning rate schedules (Darken and 
Moody, 1990) display the theoretically optimal asymptotic convergence rate 
and a superior ability to escape from poor local minima. However, the user 
is responsible for setting a key parameter. We propose here a new method­
ology for creating the first completely automatic adaptive learning rates 
which achieve the optimal rate of convergence. 

Intro d uction 

The stochastic gradient descent algorithm is 

6. Wet) = -1]\7w E(W(t), X(t)). 

where 1] is the learning rate, t is the "time", and X(t) is the independent random 
exemplar chosen at time t. The purpose of the algorithm is to find a parameter 
vector W which minimizes a function G(W) which for learning algorithms has the 
form £x E(W, X), i.e. G is the average of an objective function over the exemplars, 
labeled E and X respectively. We can rewrite 6.W(t) in terms of G as 

6. Wet) = -1][\7wG(W(t)) + e(t, Wet))], 

where the e are independent zero-mean noises. Stochastic gradient descent may be 
preferable to deterministic gradient descent when the exemplar set is increasing in 
size over time or large, making the average over exemplars expensive to compute. 
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Additionally, the noise in the gradient can help the system escape from local minima. 
The fundamental algorithmic issue is how to best adjust 11 as a function of 
time and the exemplars? 

State of the Art Schedules 

The usual non-adaptive choices of 11 (i.e. 11 depends on the time only) often yield 
poor performance. The simple expedient of taking 11 to be constant results in 
persistent residual fluctuations whose magnitude and the resulting degradation of 
system performance are difficult to anticipate (see fig. 3). Taking a smaller constant 
11 reduces the magnitude of the fluctuations, but seriously slows convergence and 
causes problems with metastable local minima. Taking l1(t) = cit, the common 
choice in the stochastic approximation literature of the last forty years, typically 
results in slow convergence to bad solutions for small c, and parameter blow-up for 
small t if c is large (Darken and Moody, 1990). 

The available adaptive schedules (i.e. 11 depends on the time and on previous exem­
plars) have problems as well. Classical methods which involve estimating the hes­
sian of G are often unusable because they require O(N2) storage and computation 
for each update, which is too expensive for large N (many parameter systems­
e.g. large neural nets). Methods such as those of Fabian (1960) and Kesten (1958) 
require the user to specify an entire function and thus are not practical methods 
as they stand. The delta-bar-delta learning rule, which was developed in the con­
text of deterministic gradient descent (Jacobs, 1988), is often useful in locating the 
general vicinity of a solution in the stochastic setting. However it hovers about the 
solution without converging (see fig. 4). A schedule developed by Urasiev is proven 
to converge in principle, but in practice it converges slowly if at all (see fig. 5). The 
literature is widely scattered over time and disciplines, however to our knowledge 
no published O(N) technique attains the optimal convergence speed. 

Search-Then-Converge Schedules 

Our recently proposed solution is the "search then converge" learning rate schedule. 
11 is chosen to be a fixed function of time such as the following: 

1 +..£1 
( ) 1/D T 

11 t = 110 1 + ..£ 1 + T t 2 

1/D T T2 

This function is approximately constant with value 110 at times small compared to T 

(the "search phase"). At times large compared with T (the "converge phase"), the 
function decreases as cit. See for example the eta vs. time curves for figs. 6 and 
7. This schedule has demonstrated a dramatic improvement in convergence speed 
and quality of solution as compared to the traditional fixed learning rate schedule 
for k-means clustering (Darken and Moody, 1990). However, these benefits apply 
to supervised learning as well. Compare the error curve of fig. 3 with those of figs. 
6 and 7. 

This schedule yields optimally fast asymptotic convergence if c > c*, c* = 1/2a, 
where a is the smallest eigenvalue of the hessian of the function G (defined above) 
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Little Drift Much Drift 

Figure 1: Two contrasting parameter vector trajectories illustrating the notion of 
drift 

at the pertinent minimum (Fabian, 1968) (Major and Revesz, 1973) (Goldstein, 
1987). The penalty for choosing c < c· is that the ratio of the excess error given c 
too small to the excess error with c large enough gets arbitrarily large as training 
time grows, i.e. 

1. Ec<c· 
1m = 00, 

t_oo Ec>c. 

where E is the excess error above that at the minimum. The same holds for the 
ratio of the two distances to the location of the minimum in parameter space. 

While the above schedule works well, its asymptotic performance depends upon 
the user's choice of c. Since neither 1}o nor T affects the asymptotic behavior of 
the system, we will discuss their selection elsewhere. Setting c > c·, however, 
is vital. Can such a c be determined automatically? Directly estimating a with 
conventional methods (by calculating the smallest eigenvalue of the hessian at our 
current estimate of the minimum) is too computationally demanding. This would 
take at least O(N2) storage and computation time for each estimate, and would 
have to be done repeatedly (N is the number of parameters). We are investigating 
the possibility of a low complexity direct estimation of a by performing a second 
optimization. However here we take a more unusual approach: we shall determine 
whether c is large enough by observing the trajectory ofthe parameter (or "weight") 
vector. 

On-line Determination of Whether c < c* 

We propose that excessive correlation in the parameter change vectors (i.e. "drift") 
indicates that c is too small (see fig. 1). We define the drift as 

D(t) = ~ d~(t) 
k 

dk(t) = JT [{(8k(t) _(~~~tt~}T )2}T )1/2 

where 8k (t) is the change in the kth component of the parameter vector at time t and 
the angled brackets denote an average over T parameter changes. We take T = at, 
where a « 1. Notice that the numerator is the average parameter step while the 
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Figure 2: (Left) An Ornstein-Uhlenbeck process. This process is zero-mean, gaus­
sian, and stationary (in fact strongly ergodic). It may be thought of as a random 
walk with a restoring force towards zero. (Right) Measurement of the drift for the 
runs c = .1c· and c = lOc· which are discussed in figs. 7 and 8 below. 

denominator is the standard deviation of the steps. As a point of reference, if the 61; 
were independent normal random variables, then the dl; would be "T-distributed" 
with T degrees of freedom, i.e. approximately unit-variance normals for moderate 
to large T. We find that 61; may also be taken to be the kth component of the noisy 
gradient to the same effect. 

Asymptotically, we will take the learning rate to go as cft. Choosing c too small 
results in a slow drift of the parameter vector towards the solution in a relatively 
linear trajectory. When c> c· however, the trajectory is much more jagged. Com­
pare figs. 7 and 8. More precisely, we find that D(t) blows up like a power of t 
when c is too small, but remains finite otherwise. Our experiments confirm 
this (for an example, see fig. 2). This provides us with a signal to use in future 
adaptive learning rate schemes for ensuring that c is large enough. 

The bold-printed statement above implies that an arbitrarily small change in c which 
moves it to the opposite side of c··has dramatic consequences for the behavior of the 
drift. The following rough argument outlines how one might prove this statement, 
focusing on the source of this interesting discontinuity in behavior. We simplify the 
argument by taking the 61; 's to be gradient measurements as mentioned above. We 
consider a one-dimensional problem, and modify d1 to be ..;T{6dT (i.e. we ignore 
the denominator). Then since T = at as stated above, we approximate 

d1 = Vr{6} (t))r ~ (Ji61 (t))T = (Ji[VG(t) + e(t)])r 

Recall the definitions of G and e from the introduction above. As t -+ 00, VG(t) -+ 

K[W(t) - Wo] for the appropriate K by the Taylor's expansion for G around Wo, 
the location of the local minimum. Thus 

lim d1 ~ (K Ji[W(t) - Wo])r + (Jie(t)}r '_00 
Define X(t) = Jt[W(t) - Wo]. Now according to (Kushner, 1978), X(e') converges 
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Figure 3: The constant 1/ schedule, commonly used in training backpropagation 
networks, does not converge in the stochastic setting. 

in distribution to the well-known Ornstein-Uhlenbeck process (fig. 2) when c > c·. 
By extending this work, one can show that X(t) converges in distribution to a 
deterministic power law, tP with p > 0 when c < c·. Since the e's are independent 
and have uniformly bounded variances for smooth objective functions, the second 
term converges in distribution to a finite-variance random variable. The first term 
converges to a finite-variance random variable if c > c·, but to a power of t if c < c· . 

Qualitative Behavior of Schedules 

We compare several fixed and adaptive learning rate schedules on a toy stochastic 
problem. Notice the difficulties that are encountered by some schedules even on a 
fairly easy problem due to noise in the gradient. The problem is learning a two 
parameter adaline in the presence of independent uniformly distributed [-0.5,0.5] 
noise on the exemplar labels. Exemplars were independently uniformly distributed 
on [-1,1]. The objective function has a condition number of 10, indicating the 
presence of the narrow ravine indicated by the elliptical isopleths in the figures. All 
runs start from the same parameter (weight) vector and receive the same sequence 
of exemplars. The misadjustment is defined as the Euclidean distance in parameter 
space to the minimum. Multiples of this quantity bound the usual sum of squares 
error measure above and below, i.e. sum of squares error is roughly proportional to 
the misadjustment. Results are presented in figs. 3-8. 

Conclusions 

Our empirical tests agree with our theoretical expectations that drift can be used to 
determine whether the crucial parameter c is large enough. Using this statistic, it 
will be possible to produce the first fully automatic learning rates which converge at 
optimal speed. We are currently investigating candidate schedules which we expect 
to be useful for large-scale LMS, backpropagation, and clustering applications. 
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Stochastic Della-Dar-Delta 
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Figure 4: Delta-bar-deita (Jacobs, 1988) was apparently developed for use with 
deterministic gradient descent. It is also useful for stochastic problems with little 
noise, which is however not the case for this test problem. In this example TJ 
increases from its initial value, and then stabilizes. We use the algorithm exactly as 
it appears in Jacobs' paper with noisy gradients substituted for the true gradient 
(which is unavailable in the stochastic setting). Parameters used were TJo = 0.1, 
B = 0.3, K = 0.01, and ¢ = 0.1. 

Urasiev 
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Figure 5: Urasiev's technique (Urasiev, 1988) varies TJ erratically over several orders 
of magnitude. The large fluctuations apparently cause TJ to completely stop changing 
after a while due to finite precision effects. Parameters used were D = 0.2, R = 2, 
and U = 1. 
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Fixed Search-Then-Converge, c=c* 
104 

10" 

~ 
10~ 

Figure 6: The fixed search-then-converge schedule with c = c'" gives excellent per­
formance. However if c'" is not known, you may get performance as in the next two 
examples. An adaptive technique is called for. 

Fixed Search-Then-Converge, c=10c* 

Figure 7: Note that taking c > c'" slows convergence a bit as compared to the c = c'" 
example in fig. 6, though it could aid escape from bad local minima in a nonlinear 
problem. 
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Fixed Search-Then-Converge, c=O.lc* 
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Figure 8: This run illustrates the penalty to be paid if c < c·. 

References 

C. Darken and J. Moody. (1990) Note on learning rate schedules for stochastic optimiza­
tion. Advances in Neural Information Processing Systems 9. 832-838. 

V.Fabian. (1960) Stochastic approximation methods. Czechoslovak Math J. 10 (85) 
123-159. 

V. Fabian. (1968) On asymptotic normality in stochastic approximation. Ann. Math. 
Stat. 39(4):1327-1332. 

1. Goldstein. (1987) Mean square optimality in the continuous time Robbins Monro pro­
cedure. Technical Report DRB-306. Department of Mathematics, University of Southern 
California. 

R. Jacobs. (1988) Increased rates of convergence through learning rate adaptation. Neural 
Networks. 1:295-307. 

H. Kesten. (1958) Accelerated stochastic approximation. Annals of Mathematical Statis­
tics. 29:41-59. 

H. Kushner. (1978) Rates of convergence for sequential Monte Carlo optimization meth­
ods. SIAM J. Control and Optimization. 16:150-168. 

P. Major and P.Revesz. (1973) A limit theorem for the Robbins-Monro approximation. Z. 
Wahrscheinlichkeitstheorie verw. Geb. 27:79-86. 

S. Urasiev. (1988) Adaptive stochastic quasigradient procedures. In Numerical Tech­
niques for Stochastic Optimization. Y. Ermoliev and R. Wets Eds. Springer-Verlag. 


