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We develop a model-independent method for characterizing the reliability 
of neural responses to brief stimuli. This approach allows us to measure 
the discriminability of similar stimuli, based on the real-time response of a 
single neuron. Neurophysiological data were obtained from a movement­
sensitive neuron (HI) in the visual system of the blowfly Calliphom ery­
throcephala. Furthermore, recordings were made from blowfly photore­
ceptor cells to quantify the signal to noise ratios in the peripheral visual 
system. As photoreceptors form the input to the visual system, the reli­
ability of their signals ultimately determines the reliability of any visual 
discrimination task. For the case of movement detection, this limit can 
be computed, and compared to the HI neuron's reliability. Under favor­
able conditions, the performance of the HI neuron closely approaches the 
theoretical limit, which means that under these conditions the nervous 
system adds little noise in the process of computing movement from the 
correlations of signals in the photoreceptor array. 

1 INTRODUCTION 

In the 1940s and 50s, several investigators realized that understanding the reliabil­
ity of computation in the nervous system posed significant theoretical challenges. 
Attempts to perform reliable computations with the available electronic computers 
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certainly posed serious practical problems, and the possibility that the problems of 
natural and artificial computing are related was explored. Guided by the practical 
problems of electronic computing, von Neumann (1956) formulated the theoreti­
cal problem of "reliable computation with unreliable components". Many authors 
seem to take as self-evident the claim that this is a problem faced by the nervous 
system as well, and indeed the possibility that the brain may implement novel solu­
tions to this problem has been at least a partial stimulus for much recent research. 
The qualitative picture adopted in this approach is of the nervous system as a 
highly interconnected network of rather noisy cells, in which meaningful signals are 
represented only by large numbers of neural firing events averaged over numerous 
redundant neurons. Neurophysiological experiments seem to support this view: If 
the same stimulus is presented repeatedly to a sensory system, the responses of an 
individual afferent neuron differ for each presentation. This apparently has led to 
a widespread belief that neurons are inherently noisy, and ideas of redundancy and 
averaging pervade much of the literature. Significant objections to this view have 
been raised, however (c/. Bullock 1970). 

As emphasized by Bullock (Ioc.cit), the issue of reliability of the nervous system is a 
quantitative one. Thus, the first problem that should be overcome is to find a way 
for its measurement. This paper focuses on a restricted, but basic question, namely 
the reliability of a single neuron, much in the spirit of previous work (cf. Barlow and 
Levick 1969, Levick et al. 1983, Tolhurst at al. 1983, Parker and Hawken 1985). 
Here the methods of analysis used by these authors are extended in an attempt to 
describe the neuron's reliability in a way that is as model-independent as possible. 

The second-conceptually more difficult-problem, is summarized cogently in Bul­
lock's words, "how reliable is reliable?". Just quantifying reliability is not enough, 
and the qualitative question of whether redundancy, averaging, multiplexing, or yet 
more exotic solutions to von Neumann's problem are relevant to the operation of 
the nervous system hinges on a quantitative comparison of reliability at the level 
of single cells with the reliability for the whole system. Broadly speaking, there 
are two ways to make such a comparison: one can compare the performance of 
the single cell either with the output or with the input of the whole system. As 
to the first possibility, if a single cell responds to a certain stimulus as reliably as 
the animal does in a behavioral experiment, it is difficult to imagine why multiple 
redundant neurons should be used to encode the same stimulus. Alternatively, if 
the reliability of a single neuron were to approach the limits set by the sensory 
periphery, there seems to be little purpose for the nervous system to use functional 
duplicates of such a cell, and the key theoretical problem would be to understand 
how such optimal processing is implemented. Here we will use the latter approach. 

We first quantify the reliability of response of HI, a wide-field movement-sensitive 
neuron in the blowfly visual system. The method consists essentially of a direct 
application of signal detection theory to trains of neural impulses generated by 
brief stimuli, using methods familiar from psychophysics to quantify discriminabil­
ity. Next we characterize signal transfer and noise in the sensory periphery-the 
photoreceptor cells of the compound eye-and we compare the reliability of infor­
mation coded in HI with the total amount of sensory information available at the 
input. 
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2 PREPARATION, STIMULATION AND RECORDING 

Experiments were performed on female wild-type blowfly Calliphora erythrocephala. 
Spikes from HI were recorded extracellularly with a tungsten microelectrode, their 
arrival times being digitized with 50 {ts resolution. The fly watched a binary 
random-bar pattern (bar width 0.029° visual angle, total size (30.5°)2) displayed on 
a CRT. Movement steps of 16 different sizes (integer multiples of 0.12°) were gener­
ated by custom-built electronics, and presented at 200 ms intervals in the neuron's 
preferred direction. The effective duration of the experiment was 11 hours, during 
which time about 106 spikes were recorded over 12552 presentations of the 16-step 
stimulus sequence. 

Photoreceptor cells were recorded intracellularly while stimulated by a spatially 
homogeneous field, generated on the same CRT that was used for the HI experi­
ments. The CRT's intensity was modulated by a binary pseudo-random waveform, 
time sampled at 1 ms. The responses to 100 stimulus periods were averaged, and 
the cell's transfer function was obtained by computing the ratio of the Fourier trans­
form of the averaged response to that of the stimulus signal. The cell's noise power 
spectrum was obtained by averaging the power spectra of the 100 traces of the 
individual responses with the average response subtracted. 

3 DATA ANALYSIS 

3.1 REPRESENTATION OF STIMULUS AND RESPONSE 

A single movement stimulus consisted of a sudden small displacement of a wide-field 
pattern. Steps of varying sizes were presented at regular time-intervals, long enough 
to ensure that responses to successive stimuli were independent. In the analysis we 
consider the stimulus to be a point event in time, parametrized by its step size Ct. 

The neuron's signal is treated as a stochastic point process, the parameters of which 
depend on the stimulus. Its statistical behavior is described by the conditional 
probability P(rICt) of finding a response r, given that a step of size Ct was presented. 
From the experimental data we estimate P(rICt) for each step size separately. To 
represent a single response r, time is divided in discrete bins of width ~t = 2 ms. 
Then r is described by a firing pattern, which is just a vector q = [qO, ql, .. ] of binary 
digits qk(k = 0, n - 1), where qk = 1 and qk = 0 respectively signify the presence 
or the absence of a spike in time bin k (cf. Eckhorn and Popel 1974). No response 
is found within a latency time t'at=15 ms after stimulus presentation; spikes fired 
within this interval are due to spontaneous activity and are excluded from analysis, 
so k = 0 corresponds to 15 ms after stimulus presentation. 

The probability distribution of firing patterns, P(qICt), is estimated by counting the 
number of occurrences of each realization of q for a large number of presentations of 
Ct. This distribution is described by a tree which results from ordering all recorded 
firing patterns according to their binary representation, earlier times corresponding 
to more-significant bits. Graphical representations of two such trees are shown ill 
Fig. 1. In constructing a tree we thus perform two operations on the raw spike 
data: first, individual response patterns are represented in discrete time bins ~t, 
and second, a permutation is performed on the set of discretized patterns to order 
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them according to their binary representation. No additional assumptions are made 
about the way the signal is encoded by the neuron. This approach should therefore 
be quite powerful in revealing any subtle" hidden code" that the neuron might use. 
As the number of branches in the tree grows exponentially with the number of time 
bins n, many presentations are needed to describe the tree over a reasonable time 
interval, and here we use n = 13. . 

3.2 COMPUTATION OF DISCRIMINABILITY 

To quantify the performance of the neuron, we compute the discriminability of two 
nearly equal stimuli al and a2, based on the difference in neural response statistics 
described by P{rlaI) and P{rl(2). The probability of correct decisions is maximized 
if one uses a maximum likelihood decision rule, so that in the case of equal prior 
probabilities the outcome is al if P{robslal) > P{robsl(2), and vice versa. On 
average, the probability of correctly identifying step al is then: 

Pc{aJ) = L P{rlat} . H[P(rlat) - P{rl(2)], 
{r} 

(1) 

where H{.) is the Heaviside step function and the summation is over the set of all 
possible responses {r}. An interchange of indices 1 and 2 in this expression yields 
the formula for correct identification of a2. The probability of making correct 
judgements over an entire experiment in which al and a2 are equiprobable is then 
simply Pc(al, (2) = [Pc{at) + Pc(a2)]/2, which from now on will be referred to as 
Pc. 

This analysis is essentially that for a "two-alternative forced-choice" psychophysical 
experiment. For convenience we convert Pc into the discriminability parameter d', 
familiar from psychophysics (Green and Swets 1966), which is the signal-to-noise 
ratio (difference in mean divided by the standard deviation) in the equivalent equal­
variance Gaussian decision problem. 

Using the firing-pattern representation, r = q, and computing d' for successive 
subvectors of q with elements m = 0, .. , k and k = 0, .. , n - 1, we compute Pc for 
different values of k and from that obtain d'{k), the discrimillability as a function 
of time. 

3.3 THEORETICAL LIMITS TO DISCRIMINATION 

For the simple stimuli used here it is relatively easy to determine the theoretical limit 
to discrimination based on the photoreceptor signal quality. For the computation 
of this limit we use Reichardt's (1957) correlation model of movement detection. 
This model has been very successful in describing a wide variety of phenomena 
in biological movement detection, both in fly (Reichardt and Poggio 1976), and 
in humans (van Santen and Sperling 1984). Also, correlation-like operations can 
be proved to be optimal for the extraction of movement information at low signal 
to noise ratio (Bialek 1990). The measured signal transfer of the photoreceptors, 
combined with the known geometry of the stimulus and the optics of the visual 
system determine the signal input to the model. The noise input is taken directly 
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Figure 1: Representation of the firing pattern distributions for steps of 0.24° and 
0.36°. Here only 11 time bins are shown. 

from the measured photoreceptor noise power spectrum. Details of this computation 
are given in de Ruyter van Steveninck (1986). 

3.4 ERROR ANALYSIS AND DATA REQUIREMENTS 

The effects of the approximation due to time-discretization can be assessed by vary­
ing the binwidth. It turns out that the results do not change appreciably if the bins 
are made smaller than 2 ms. Furthermore, if the analysis is to make sense, station­
arity is required, i.e. the probability distribution from which responses to a certain 
stimulus are drawn should be invariant over the course of the experiment. Finally, 
the distributions, being computed from a finite sample of responses, are subject to 
statistical error. The statistical error in the final result was estimated by partition­
ing the data and working out the values of Pc for these partitions separately. The 
statistical variations in Pc were of the order of 0.01 in the most interesting region 
of values of Pc, i.e. from 0.6 to 0.9. This results in a typical statistical error of 0.05 
in d'. In addition, this analysis revealed no significant trends with time, so we may 
assume stationarity of the preparation. 

4 RESULTS 

4.1 STEP SIZE DISCRIMINATION BY THE HI NEURON 

Although 16 different step sizes were used, we limit the presentation here to steps 
of 0.24° and 0.36°; binary trees representing the two firing-pattern distributions are 
shown in Fig. 1. The first time bin describes the probabilities of two possible events: 
either a spike was fired (black) or not (white), and these two probabilities add up 
to unity. The second time bin describes the four possible combinations of finding 
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Figure 2: Left: Discrimination performance of an ideal movement detector. See 
text for further details. Right: comparison of the theoretical and the measured 
values of d'et). Fat line: measured performance of Hl. Thin solid line: predicted 
performance, taken from the left figure. Dashed line: the same curve shifted by 5 
ms to account for latency time in the pathway from photoreceptor to HI. This time 
interval was determined independently with powerful movement stimuli. 

or not finding a spike in bin 2 combined with finding or not finding a spike in bin 
1, and so on. The figure shows that the probability of firing a spike in time bin 1 
is slightly higher for the larger step. From above we compute Pc, the probability of 
correct identification, in a task where the choice is between step sizes of 0.240 and 
0.360 with equal prior probabilities. The decision rule is simple: if a spike is fired in 
bin 1, choose the larger, otherwise choose the smaller step. In the same fashion we 
apply this procedure to the following time bin, with four response categories and so 
on. The value of d' computed from Pc for this step size pair as a function of time 
is given by the fat line at the right in Fig. 2. 

4.2 LIMITS SET BY PHOTORECEPTOR SIGNALS 

Figure 2 (left) shows the limit to movement detection computed for an array of 2650 
Reichardt correlators stimulated with a step size difference of 0.12 0 , conforming to 
the experimental conditions. Comparing the performance of HI to this result (the 
fat and the dashed lines in Fig. 2, right), we see that the neuron follows the limit 
set by the sensory periphery from about 18 to 28 ms after stimulus presentation. 
So, for this time window the randomness of HI's response is determined primarily 
by photoreceptor noise. Up to about 20 Hz, the photoreceptor signal-to-noise ratio 
closely approached the limit set by the random arrival of photons at the photorecep­
tors at a rate of about 104 effective conversions/so Hence most of the randomness 
in the spike train was caused by photon shot noise. 
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5 DISCUSSION 

The approach presented here gives us estimates for the reliability of a single neuron 
in a well-defined, though restricted experimental context. In addition the theoretical 
limits to the reliability of movement-detection are computed. Comparing these two 
results we find that HI in these conditions uses essentially all of the movement 
information available over a 10 ms time interval. Further analysis shows that this 
information is essentially contained in the time of firing of the first spike. The 
plateau in the measured d'(t) between 28 and 34 ms presumably results from effects 
of refractoriness, and the subsequent slight rise is due to firing of a second spike. 

Thus, a step size difference of 0.12° can be discriminated with d' close to unity, 
using the timing information of just one spike from one neuron. For the blowfly 
visual system this angular difference is of the order of one-tenth of the photoreceptor 
spacing, well within the hyperacuity regime (cf. Parker and Hawken 1985). 

It should not be too surprising that the neuron performs well only over a short 
time interval and does not reach the values for d' computed from the model at large 
delays (Fig. 2, left): The experimental stimulus is not very natural, and in real-life 
conditions the fly is likely to see movement changing continuously. (Methods for an­
alyzing responses to continuous movement are treated in de Ruyter van Steveninck 
and Bialek 1988, and in Bialek et al. 1991.) In such circumstances it might be 
better not to wait very long to get an accurate estimate of the stimulus at one 
point in time, but rather to update rough estimates as fast as possible. This would 
favor a coding principle where successive spikes code independent events, which 
may explain that the plateau in the measured d'{t) starts at about the point where 
the computed d'{t) has maximal slope. Such a view is supported by behavioral 
evidence: A chasing fly tracks the leading fly with a delay of about 30 ms (Land 
and Collett 1974), corresponding to the time at which the measured d'{t) levels off. 

In conclusion we can say that in the experiment, for a limited time window the 
neuron effectively uses all information available at the sensory periphery. Periph­
eral noise is in turn determined by photon shot noise so that the reliability of HI's 
output is set by the physics of its inputs. There is no neuro-anatomical or neuro­
physiological evidence for massive redundancy in arthropod nervous systems. More 
specifically, for the fly visual system, it is known that HI is unique in its combina­
tion of visual field and preferred direction of movement (Hausen 1982), and from 
the results presented here we may begin to understand why: It just makes little 
sense to use functional duplicates of any neuron that performs almost perfectly 
when compared to the noise levels inherently present in the stimulus. It remains to 
be seen to what extent this conclusion can be generalized, but one should at least 
be cautious in interpreting the variability of response of a single neuron in terms of 
noise generated by the nervous system itself. 
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