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Abstract 

The Bayesian model comparison framework is reviewed, and the Bayesian 
Occam's razor is explained. This framework can be applied to feedforward 
networks, making possible (1) objective comparisons between solutions 
using alternative network architectures; (2) objective choice of magnitude 
and type of weight decay terms; (3) quantified estimates of the error bars 
on network parameters and on network output. The framework also gen­
erates a measure of the effective number of parameters determined by the 
data. 

The relationship of Bayesian model comparison to recent work on pre­
diction of generalisation ability (Guyon et al., 1992, Moody, 1992) is dis­
cussed. 

1 BAYESIAN INFERENCE AND OCCAM'S RAZOR 

In science, a central task is to develop and compare models to account for the data 
that are gathered. Typically, two levels of inference are involved in the task of 
data modelling. At the first level of inference, we assume that one of the models 
that we invented is true, and we fit that model to the data. Typically a model 
includes some free parameters; fitting the model to the data involves inferring what 
values those parameters should probably take, given the data. This is repeated for 
each model. The second level of inference is the task of model comparison. Here, 
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we wish to compare the models in the light of the data, and assign some sort of 
preference or ranking to the alternatives.1 

For example, consider the task of interpolating a noisy data set. The data set 
could be interpolated using a splines model, polynomials, or feedforward neural 
networks. At the first level of inference, we find for each individual model the best 
fit interpolant (a process sometimes known as 'learning'). At the second level of 
inference we want to rank the alternative models and state for our particular data 
set that, for example, 'splines are probably the best interpolation model', or 'if the 
interpolant is modelled as a polynomial, it should probably be a cubic', or 'the best 
neural network for this data set has eight hidden units'. 

Model comparison is a difficult task because it is not possible simply to choose the 
model that fits the data best: more complex models can always fit the data better, 
so the maximum likelihood model choice leads us inevitably to implausible over­
parameterised models which generalise poorly. 'Occam's razor' is the principle that 
states that unnecessarily complex models should not be preferred to simpler ones. 
Bayesian methods automatically and quantitatively embody Occam's razor (Gull, 
1988, Jeffreys, 1939), without the introduction of ad hoc penalty terms. Complex 
models are automatically self-penalising under Bayes' rule. 

Let us write down Bayes' rule for the two levels of inference described above . As­
sume each model 1ii has a vector of parameters w. A model is defined by its 
functional form and two probability distributions: a 'prior' distribution P(WI1ii) 
which states what values the model's parameters might plausibly take; and the pre­
dictions P(Dlw, 1ii) that the model makes about the data D when its parameters 
have a particular value w. Note that models with the same parameterisation but 
different priors over the parameters are therefore defined to be different models. 

1. Model fitting. At the first level of inference, we assume that one model 1ii 
is true, and we infer what the model's parameters w might be given the data D. 
Using Bayes' rule, the posterior probability of the parameters w is: 

(1) 

In words: 
. Likelihood X Prior 

Postenor = . d 
EVI ence 

It is common to use gradient-based methods to find the maximum of the posterior, 
which defines the most probable value for the parameters, W MP ; it is then common 
to summarise the posterior distribution by the value of W MP , and error bars on 
these best fit parameters. The error bars are obtained from the curvature of the 
posterior; writing the Hessian A = -\7\7 log P(wID, 1ii) and Taylor-expanding the 
log posterior with ~w = w - W MP , 

(2) 

1 Note that both levels of inference are distinct from decision theory. The goal of infer­
ence is, given a defined hypothesis space and a particular data set, to assign probabilities 
to hypotheses. Decision theory chooses between alternative actions on the basis of these 
probabilities so as to minimise the expectation of a 'loss function'. 
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Figure 1: The Occam factor 
This figure shows the quantities that determine the Occam factor for a hypothesis 1ii hav­
in§ a single parameter w. The prior distribution (dotted line) for the parameter has width 
Il. w. The posterior distribution (solid line) has a single peak at WMP with characteristic 
width Il.w. The Occam factor is :b~. 

we see that the posterior can be locally approximated as a gaussian with covariance 
matrix (error bars) A -1. 

2. Model comparison. At the second level of inference, we wish to infer which 
model is most plausible given the data. The posterior probability of each model is: 

P(1ii ID) ex P(DI1ii )P(1ii ) (3) 
Notice that the objective data-dependent term P(DI1id is the evidence for 1ii, 
which appeared as the normalising constant in (1). The second term, P(1ii ), is a 
'subjective' prior over our hypothesis space. Assuming that we have no reason to 
assign strongly differing priors P(1ii) to the alternative models, models 1ii are 
ranked by evaluating the evidence. 

This concept is very general: the evidence can be evaluated for parametric and 
'non-parametric' models alike; whether our data modelling task is a regression 
problem, a classification problem, or a density estimation problem, the evidence 
is the Bayesian's transportable quantity for comparing alternative models. In all 
these cases the evidence naturally embodies Occam's razor, as we will now see. The 
evidence is the normalising constant for equation (1): 

P(D l1ii) = J P(Dlw, 1ii)P(wl1id dw (4) 

For many problems, including interpolation, it is common for the posterior 
P(wID,1ii) ex P(Dlw,1ij)P(wl1ii) to have a strong peak at the most probable 
parameters W MP (figure 1). Then the evidence can be approximated by the height 
of the peak of the integrand P(Dlw, 1ii)P(wl1ii) times its width, ~w: 

- P(D IwMP ' 1ii) , ~ 

y 

Evidence - Best fit likelihood 

P(wMPI1ii) ~w , ~ 

y 

Occam factor 

(5) 

Thus the evidence is found by taking the best fit likelihood that the model can 
achieve and multiplying it by an 'Occam factor' (Gull, 1988), which is a term with 
magnitude less than one that penalises 1ii for having the parameter w. 
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Interpretation of the Occam factor 

The quantity ~ w is the posterior uncertainty in w. Imagine for simplicity that 
the prior P(wlllj) is uniform on some large interval ~ow (figure 1), so that 
P(wMPllli) = AJW; then 

~w 
Occam factor = ~ ow' 

i.e. the ratio of the posterior accessible volume oflli's parameter space to 
the prior accessible volume (Gull, 1988, Jeffreys, 1939). The log of the Occam 
factor can be interpreted as the amount of information we gain abou t the model lli 
when the data arrive. 

Typically, a complex or flexible model with many parameters, each of which is free 
to vary over a large range ~ ow, will be penalised with a larger Occam factor than 
a simpler model. The Occam factor also penalises models which have to be finely 
tuned to fit the data. Which model achieves the greatest evidence is determined 
by a trade-off between minimising this natural complexity measure and minimising 
the data misfit. 

Occam factor for several parameters 

If w is k-dimensional, and if the posterior is well approximated by a gaussian, the 
Occam factor is given by the determinant of the gaussian's covariance matrix: 

where A = - VV log P(wID, lli), the Hessian which we already evaluated when we 
calculated the error bars on W MP . As the amount of data collected, N, increases, 
this gaussian approximation is expected to become increasingly accurate on account 
of the central limit theorem. 

Thus Bayesian model selection is a simple extension of maximum likelihood model 
selection: the evidence is obtained by multiplying the best fit likelihood 
by the Occam factor. To evaluate the Occam factor all we need is the Hessian 
A, if the gaussian approximation is good. Thus the Bayesian method of model 
comparison by evaluating the evidence is computationally no more demanding than 
the task of finding for each model the best fit parameters and their error bars. 

2 THE EVIDENCE FOR NEURAL NETWORKS 

Neural network learning procedures include a host of control parameters such as 
the number of hidden units and weight decay rates. These parameters are difficult 
to set because there is an Occam's razor problem: if we just set the parameters 
so as to minimise the error on the training set, we would be led to over-complex 
and under-regularised models which over-fit the data. Figure 2a illustrates this 
problem by showing the test error versus the training error of a hundred networks 
of varying complexity all trained on the same interpolation problem. 
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Of course if we had unlimited resources, we could compare these networks by mea­
suring the error on an unseen test set or by similar cross-validation techniques. 
However these techniques may require us to devote a large amount of data to the 
test set, and may be computationally demanding. If there are several parameters 
like weight decay rates, it is preferable if they can be optimised on line. 

Using the Bayesian framework, it is possible for all our data to have a say in both the 
model fitting and the model comparison levels of inference. We can rank alternative 
neural network solutions by evaluating the 'evidence'. Weight decay rates can also 
be optimised by finding the 'most probable' weight decay rate. Alternative weight 
decay schemes can be compared using the evidence. The evidence also makes it 
possible to compare neural network solutions with other interpolation models, for 
example, splines or radial basis functions, and to choose control parameters such 
as spline order or RBF kernel. The framework can be applied to classification 
networks as well as the interpolation networks discussed here. For details of the 
theoretical framework (which is due to Gull and Skilling (1989» and for more 
complete discussion and bibliography, MacKay (1991) should be consulted. 

2.1 THE PROBABILISTIC INTERPRETATION 

Fitting a backprop network to a data set D = {x, t} often involves minimising an 
objective function M(w) = {3ED(W; D) + aEw(w). The first term is the data er­
ror, for example ED = L !(Y - t)2, and the second term is a regulariser (weight 
decay term), for example Ew = L !w~ . (There may be several regularisers with 
independent constants {a c}. The Bayesian framework also covers that case.) A 
model 1£ has three components {A,N, 'R}: The architecture A specifies the func­
tional dependence of the input-output mapping on the network's parameters w. 
The noise model N specifies the functional form of the data error. Within the 
probabilistic interpretation (Tishby et ai., 1989), the data error is viewed as relat­
ing to a likelihood, P(Dlw,{3,A,N) = exp(-{3ED )/ZD. For example, a quadratic 
ED corresponds to the assumption that the distribution of errors between the data 
and the true interpolant is Gaussian, with variance u~ = 1/ {3. Lastly, the regu­
lariser 'R, with associated regularisation constant a, is interpreted as specifying a 
prior on the parameters w, P(wla,A, 'R) = exp( -aEw). For example, the use of 
a plain quadratic regulariser corresponds to a Gaussian prior distribution for the 
parameters. 

Given this probabilistic interpretation, interpolation with neural networks can then 
be decomposed into three levels of inference: 

1 Fitting a regularised model 

2a Setting regularisation con­
stants and estimating nOIse 
level 

2 Model comparison 

P( ID {3 1£.) = P(Dlw, {3, 1£j)P(wla, 1£i) 
w ,a, , a P(Dla,{3,1id 

P(a {3ID 1£-) = P(Dla,{3,1£i)P(a, {311£i) 
, ,a P(DI1ij) 

Both levels 2a and 2 require Occam's razor. For both levels the key step is to 
evaluate the evidence P(Dla,{3,1£), which, within the quadratic approximation 
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Figure 2: The evidence solves the neural networks' Occam problem 

a) Test error vs. data error. Each point represents the performance of a single trained 
neural network on the training set and on the test set. This graph illustrates the fact that 
the best generalisation is not achieved by the models which fit the training data best. 
b) Log Evidence vs. test error. 

around w MP , is given by: 
1 k 

log P(Dla,,B, 1-£) = -aEW -,BE~P -210g det A-log Zw(a)-log ZD (,B) + '2 log 27r. 

(1) 
At level 2a we can find the most probable value for the regularisation constant a 

and noise level 1/,B by differentiating (1) with respect to a and ,B. The result is 

X!. = 2aEw = 'Y and X~ = 2,BED = N - 'Y, (8) 
where'Y is 'the effective number of parameters determined by the data' (Gull, 1989), 

k 
-1 " Aa 'Y = k - aTraceA: = ~ A ' 

a=1 a + a 
(9) 

where Aa are the eigenvalues of 'V''V' ,BED in the natural basis of Ew. Each term 
in the sum is a number between 0 and 1 which measures how well one parame­
ter is determined by the data rather than by the prior. The expressions (8), or 
approximations to them, can be used to re-estimate weight decay rates on line. 

The central quantity in the evidence and in 'Y is the inverse hessian kl, which 
describes the error bars on the parameters w. From this we can also obtain error 
bars on the outputs of a network (Denker and Le Cun, 1991, MacKay, 1991). These 
error bars are closely related to the predicted generalisation error calculated by 
Levin et al.(1989). In (MacKay, 1991) the practical utility of these error bars is 
demonstrated for both regression and classification networks. 

Figure 2b shows the Bayesian 'evidence' for each of the solutions in figure 2a against 
the test error. It can be seen that the correlation between the evidence and the 
test error is extremely good. This good correlation depends on the model being 
well-matched to the problem; when an inconsistent weight decay scheme was used 
(forcing all weights to decay at the same rate), it was found that the correlation be­
tween the evidence and the test error was much poorer. Such comparisons between 
Bayesian and traditional methods are powerful tools for human learning. 
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3 RELATION TO THEORIES OF GENERALISATION 

The Bayesian 'evidence' framework assesses within a well-defined hypothesis space 
how probable a set of alternative models are. However, what we really want to 
know is how well each model is expected to generalise. Empirically, the correlation 
between the evidence and generalisation error is surprisingly good. But a theoretical 
connection linking the two is not yet established. Here, a brief discussion is given 
of similarities and differences between the evidence and quantities arising in recent 
work on prediction of generalisation error. 

3.1 RELATION TO MOODY'S 'G.P.E.' 

Moody's (1992) 'Generalised Prediction Error' is a generalisation of Akaike's 
'F .P.E.' to non-linear regularised models. The F .P.E. is an estimator of generalisa­
tion error which can be derived without making assumptions about the distribution 
of errors between the data and true interpolant, and without assuming a known 
class to which the true interpolant belongs. The difference between F .P.E. and 
G.P.E. is that the total number of parameters k in F.P.E. is replaced by an effective 
number of parameters, which is in fact identical to the quantity -y arising in the 
Bayesian analysis (9). If ED is as defined earlier, 

G.P.E. = (ED + u~-y) IN. (10) 

Like the log evidence, the G .P.E. has the form of the data error plus a term that 
penalises complexity. However, although the same quantity -y arises in the Bayesian 
analysis, the Bayesian Occam factor does not have the same scaling behaviour as the 
G.P.E. term (see discussion below). And empirically, the G.P.E. is not always a good 
predictor of generalisation. The reason for this is that in the derivation of the G.P.E., 
it is assumed that the distribution over x values is well approximated by a sum of 
delta functions at the samples in the training set. This is equivalent to assuming test 
samples will be drawn only at the x locations at which we have already received data. 
This assumption breaks down for over-parameterised and over-flexible models. An 
additional distinction that between the G.P.E. and the evidence framework is that 
the G.P.E. is defined for regression problems only; the evidence can be evaluated 
for regression, classification and density estimation models. 

3.2 RELATION TO THE EFFECTIVE V-C DIMENSION 

Recent work on 'structural risk minimisation' (Guyon et al., 1992) utilises empirical 
expressions of the form: 

E ,...., E IN log(NI-y) + C2 
gen - D + Cl N l-y (11) 

where -y is the 'effective V-C dimension' of the model, and is identical to the quan­
tity arising in (9). The constants Cl and C2 are determined by experiment. The 
structural risk theory is currently intended to be applied only to nested families of 
classification models (hence the abscence of (3: ED is dimensionless) with monotonic 
effective V-C dimension, whereas the evidence can be evaluated for any models. 
However, it is very interesting that the scaling behaviour of this expression (11) is 
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identical to the scaling behaviour of the log evidence (1), subject to the following 
assumptions. Assume that the value of the regularisation constant satisfies (8). 
Assume furthermore that the significant eigenvalues (Aa > a) scale as Aa -- Na/'Y 
(It can be confirmed that this scaling is obtained for example in the interpolation 
models consisting of a sequence of steps of independent heights, as we vary the 
number of steps.) Then it can be shown that the scaling of the log evidence is: 

1 
-log P(Dla,,B, 1i) '" ,BE~P + 2 ('Y log(N /'Y) + 'Y) (12) 

(Readers familiar with MDL will recognise the dominant 1 log N term; MDL and 
Bayes are identical.) Thus the scaling behaviour of the lo~ evidence is identical to 
the structural risk minimisation expression (11), if Cl = - and C2 = 1. I. Guyon 
(personal communication) has confirmed that the empirically determined values for 
Cl and C2 are indeed close to these Bayesian values. It will be interesting to try and 
understand and develop this relationship. 
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