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Abstract 

We designed and trained a connectionist network to generate 
letterfonns in a new font given just a few exemplars from 
that font. During learning. our network constructed a 
distributed internal representation of fonts as well as letters. 
despite the fact that each training instance exemplified both a 
font and a letter. It was necessary to have separate but 
interconnected hidden units for " letter" and "font" 
representations - several alternative architectures were not 
successful. 

l. INTRODUCTION 

Generalization from examples is central to the notion of cognition and 
intelligent behavior (Margolis, 1987). Much research centers on 
generalization in recognition, as in optical character recognition, speech 
recognition. and so fonh. In all such cases, during the recognition event the 
information content of the representation is reduced; sometimes 
categorization is binary, representing just one bit of infonnation. Thus the 
infonnation reduction in answering "Is this symphony by Mozan?" is very 
large. 

A different class of problems requires generalization for production, e.g., 
paint a portrait of Madonna in the style of Matisse. Here during the 
production event a very low infonnational input ("Madonna," and 
"Matisse") is used to create a very high informational output, including 
color, fonn, etc. on the canvas. Such problems are a type of analogy. and 
typically require the generalization system to abstract out invariants in both 
the instance being presented (e.g., Madonna) and the style (e.g., Matisse), 
and to integrate these representations in a meaningful way. This must be 
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done despite the fact that the system is never taught explicitly the features 
that correspond to Matisse's style alone, nor to Madonna's face alone, and 
is never presented an example of both simultaneously_ 

To explore this class of analogy and production issues, we addressed the 
following problem, derived from Hofstadter (1985): 

Given just a few letters in a new font, draw the remaining letters. 

Connectionist networks have recently been applied to production problems 
such as music composition (Todd, 1989), but our task is somewhat 
different. Whereas in music composition, memory and context (in the form 
of recurrent connections in a network) are used for pattern generation 
(melody or harmony), we have no such temporal or other explicit context 
information during the production of letterforms. 

2. DATA, NETWORK AND TRAINING 

Figure 1 illustrates schematically our class of problems, and shows a subset 
of the data used to train our network. The general problem is to draw all the 
remaining letterforms in a given font, such that those forms are recognizable 
as letters in the style of that font. 
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Figure 1: Several letters from three fonts (Standard, 
House and Benzene right) in Hofstadter's GridFont 
system. There are 56 fundamental horizontal, vertical and 
diagonal strokes, or "pixels," in the grid. 
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Each letterfonn in Figure 1 has a recognizable letter identity and "style" (or 
font). Each letter (columns) shares some invariant features as does each 
font (rows), though it would be quite difficult to describe what is the 
"same" in each of the a's for instance, or for all letters in Benzene right 
font. 

We trained our network with 26 letters in each of five fonts (Standard, 
House, Slant, Benzene right and Benzene left), and just 14 letters in 
the "test" font (Hunt four font). The task of the network was to 
reconstruct the missing 12 letters in Hunt four font. We used a structured 
three-level network (Figure 2) in which letter identity was represented in a 
l-of-26 code (e.g., 010000 ... ~ b), and the font identity was represented in 
a similar l-of-6 code. The letterfonns were represented as 56-element 
binary vectors, with l' s for each stroke comprising the character, and were 
provided to the output units by a teacher. (Note that this network is 
"upside-down" from the typical use of connectionist networks for 
categorization.) The two sections of the input layer were each fully 
connected to the hidden layer, but the hidden layer-to-output layer 
connections were restricted (Figures 3 and 4). Such restricted hidden-to­
output projections helped to prevent the learning of spurious and 
meaningless correlations between strokes in widely separate grid regions. 
There are unidirectional one-to-many intra-hidden layer connections from 
the letter section to the font section within the hidden layer (Figure 3). 

I 

/ 

56 strokes 
restricted 

connections 

44 letter hidden I 
fully interconnected \ 

44 font hidden 

tUllY interconnected ~ 

26 letters I 6 fonts 
Figure 2: Network used for generalization in production. 
Note that the high-dimensional representation of strokes is at 
the output of the network, while the low-dimensional 
representation (a one-of-26 coding for letters and a one-of­
six for fonts) is the input. The net has one-to-many 
connections from letter hidden units to font hidden units (cf. 
Figure 3) 
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letter hidden units font hidden units 
Figure 3: Expanded view of the hidden and output layers 
of the network of Figure 2. Four letter hidden units and four 
font hidden units (dark) project fully to the eighteen stroke 
(output) units representing the ascender region of the 
GridFont grid; these hidden units project to no other output 
units. Each of the four letter hidden units also projects to all 
four of the corresponding font hidden units. This basic 
structure is repeated across the network (see text). 

All connection weights, including intra-hidden layer weights, were adjusted 
using backpropagation (Rumelhart, Hinton and Williams, 1986), with a 
learning rate of TJ = 0.005 and momentum IX = 0.9. The training error 
stopped decreasing after roughly 10,000 training epochs, where each epoch 
consisted of one presentation of each of the 144 patterns (26 letters x 
5 fonts + 14 letters) in random order. 
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Figure 4: The number of hidden units projecting to each 
region of the output. Four font hidden units and four letter 
hidden units project to the 18 top strokes (ascender region) 
of the output layer, as indicated. Ten font hidden units and 
ten letter hidden units project to the next lower square region 
(20 strokes), etc. This restriction prevents the learning of 
meaningless correlations between particular strokes in the 
ascender and descender regions (for instance). Such 
spurious correlations disrupt learning and generalization only 
with a small training set such as ours. 
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3. RESULTS AND CONCLUSIONS 

In order to produce any letterfonn, we presented as input to the trained 
network a (very sparse) l-of-26 and l-of-6 signal representing the target 
letter and font; the letterfonns emerged at the output layer. Our network 
reproduced nearly perfectly all the patterns in the training set. 

Figure 5 shows untrained letterfonns generated by the network. Note that 
despite irregularities, all the letters except z can be easily recognized by 
humans. Moreover, the letterfonns typically share the common style of 
Hunt four font - b, c, g, and p have the diamond-shaped "loop" of 0, q, 
and other letters in the font; the g and y generated have the same right 
descender, similar to that in several letters of the original font, and so on; 
the I exactly matches the fonn designed by Hofstadter. Incidentally, we 
found that some of the letterfonns produced by the network could be 
considered superior to those designed by Hofstadter. For instance, the 
generated w had the characteristic Hunt four diamond shape while the w 
designed by Hostadter did not. We must stress, though, that there is no 
"right" answer here; the letterforms provided by Hofstadter are merely one 
possible solution. Just as there is no single "correct" portrait of Madonna in 
the style of Matisse, so our system must be judged successful if the 
letterforms produced are both legible and have the style implied by the other 
letterforms in the test font 
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Figure 5: Hofstadter's letterfonns from Hunt four font 
(above), and the output of our network (below) for the 
twelve letterforms that had never been presented during 
training. Hofstadter's letterfonns serve merely as a guide; it 
is not necessary that the network reproduce these exactly to 
be judged successful. 

Analysis of learned connection strengths (Grebert et al., 1992) reveals that 
different internal representations were formed for letter and for font 
characteristics, and that these are appropriate to the task at hand. The 
particular letter hidden unit shown in Figure 6 effectively "shuts down" any 
activity in the ascender region. Such a hidden unit would be useful when 
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generating a, c, e, etc. Indeed this hidden unit receives strong input from 
all letters that have no ascenders. The particular font hidden unit shown in 
Figure 6 leads to excitation of the "loop" in Slant font, and is used in the 
generation of 0, b, d, g, etc. in that font. We note further that our network 
integrated style information (e.g., the diamond shape of the "loop" for the 
b, g, the "dot" for the I, etc.) with the form information appropriate to the 
particular letter being generated. 
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Figure 6: Hidden unit representation for a single letter 
hidden unit (left) and font hidden unit (right). 

In general, the network does quite well. The only letterform quite poorly 
represented is z. Evidently, the z letterform cannot be inferred from other 
information, presumably because z does not consist of any of the simplest 
fundamental features that make up a wide variety of other letters (left or 
right ascenders, loops, crosses for t and f, dots, right or left descenders). 

The average adult has seen perhaps as many as 106 distinct examples of 
each letter in perhaps 1010 presentations; in contrast, our network 
experienced just five or six distinct examples of each letter in 104 

presentations. Out of this tremendous number of letterforms, the human 
virtually never experiences a g that has a disconnected descender (to take 
one example), and would not have made the errors our network does. We 
suspect that the errorS our network makes are similar to those a typical 
westerner would exhibit in generating novel characters in a completely 
foreign alphabet, such as Thai. Although our network similarly has 
experienced only g's with connected descenders, it has a very small 
database over which to generalize; it is to be expected, then, that the 
network has not yet "deduced" the connectivity constraint for g. Indeed, it 
is somewhat surprising that our network performs as well as it does, and 
this gives us confidence that the architecture of Figure 2 is appropriate for 
the production task. 
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This conclusion is supported by the fact that alternative architectures gave 
very poor results. For instance a standard three-level backpropagation 
network produced illegible letterfonns. Likewise, if the direct connections 
between letter hidden units and the output units in Figure 2 were removed, 
generalization perfonnance was severely compromised. 

Our network parameters could have been "fine tuned" for improved 
perfonnance but such fine tuning would be appropriate for our problem 
alone, and not the general class of production problems. Even without such 
fine tuning, though, it is clear that the architecture of Figure 2 can 
successfully learn invariant features of both letter and font infonnation, and 
integrate them for meaningful production of unseen letterfonns. We believe 
this architecture can be applied to related problems, such as speech 
production, graphic image generation, etc. 
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