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Abstract 
A large class of motor control tasks requires that on each cycle the con­
troller is told its current state and must choose an action to achieve a 
specified, state-dependent, goal behaviour. This paper argues that the 
optimization of learning rate, the number of experimental control deci­
sions before adequate performance is obtained, and robustness is of prime 
importance-if necessary at the expense of computation per control cy­
cle and memory requirement. This is motivated by the observation that 
a robot which requires two thousand learning steps to achieve adequate 
performance, or a robot which occasionally gets stuck while learning, will 
always be undesirable, whereas moderate computational expense can be 
accommodated by increasingly powerful computer hardware. It is not un­
reasonable to assume the existence of inexpensive 100 Mflop controllers 
within a few years and so even processes with control cycles in the low 
tens of milliseconds will have millions of machine instructions in which to 
make their decisions. This paper outlines a learning control scheme which 
aims to make effective use of such computational power. 

1 MEMORY BASED LEARNING 
Memory-based learning is an approach applicable to both classification and func­
tion learning in which all experiences presented to the learning box are explic­
itly remembered. The memory, Mem, is a set of input-output pairs, Mem = 
{(Xl, YI), (X21 Y2), ... , (Xb Yk)}. When a prediction is required of the output of a 
novel input Xquery, the memory is searched to obtain experiences with inputs close to 
Xquery. These local neighbours are used to determine a locally consistent output for 
the query. Three memory-based techniques, Nearest Neighbour, Kernel Regression, 
and Local Weighted Regression, are shown in the accompanying figure. 
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Nearest Neighbour: 
Ypredict(Xquery) = Yi where 
i minimizes {( Xi - x query) 2 : 
(Xi, Yi) E Mem}. There 
is a general introduction 
in [5], some recent appli­
cations in [11], and recent 
robot learning work in [9, 3]. 
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Kernel Regression: Also Local Weighted Regres­
known as Shepard's interpo- sion: finds the linear map­
lation or Local Weighted Av- ping Y = Ax to minimize 
erages. Y;.;edict(Xquery) = the sum of weighted squares 
C£ w.y.)/ L w. where Wi = of residua!s E Wj(Yi - AXi)2. 
exp( -(Xi - X query )2 / K width 2)Yp!~dict IS ~hen AXquery. 
[6] describes some variants LWR was mtroduced for 

. robot learning control by [1]. 

2 A MEMORY-BASED INVERSE MODEL 
An inverse model maps State x Behaviour ~ Action (8 x b ~ a). Behaviour is 
the output of the system, typically the next state or time derivative of state. The 
learned inverse model provides a conceptually simple controller: 

1. Observe 8 and b goa1 . 

2. a : - inverse-model(s, bgoal) 

3. Perform action a and observe actual behaviour bactual. 

4. Update MEM with (8, bactual - a): If we are ever again in state 8 and 
require behaviour bactual we should apply action a. 

Memory-based versions of this simple algorithm have used nearest neighbour [9] 
and LWR [3]. bgoal is the goal behaviour: depending on the task it may be fixed 
or it may vary between control cycles, perhaps as a function of state or time. The 
algorithm provides aggressive learning: during repeated attempts to achieve the 
same goal behaviour, the action which is applied is not an incrementally adjusted 
version of the previous action, but is instead the action which the memory and the 
memory-based learner predicts will directly achieve the required behaviour. If the 
function is locally linear then the sequence of actions which are chosen are closely 
related to the Secant method [4] for numerically finding the zero of a function by 
bisecting the line between the closest approximations that bracket the y = 0 axis. If 
learning begins with an initial error Eo in the action choice, and we wish to reduce 
this error to Eo/I<, the number of learning steps is O(log log I<): subject to benign 
conditions, the learner jumps to actions close to the ideal action very quickly. 

A common objection to learning the inverse model is that it may be ill-defined. For 
a memory-based method the problems are particularly serious because of its update 
rule. It updates the inverse model near bactual and therefore in those cases in which 
bgoal and bactual differ greatly, the mapping near bgoal may not change. As a result, 
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subsequent cycles will make identical mistakes. [10] discusses this further. 

3 A MEMORY-BASED FORWARD MODEL 
One fix for the problem of inverses becoming stuck is the addition of random noise 
to actions prior to their application. However, this can result in a large proportion 
of control cycles being wasted on experiments which the robot should have been able 
to predict as valueless, defeating the initial aim of learning as quickly as possible. 

An alternative technique using multilayer neural nets has been to learn a forward 
model, which is necessarily well defined, to train a partial inverse. Updates to the 
forward model are obtained by standard supervised training, but updates to the 
inverse model are more sophisticated. The local Jacobian of the forward model 
is obtained and this value is used to drive an incremental change to the inverse 
model [8]. In conjunction with memory-based methods such an approach has the 
disadvantage that incremental changes to the inverse model loses the one-shot learn­
ing behaviour, and introduces the danger of becoming trapped in a local minimum. 

Instead, this investigation only relies on learning the forward model. Then the 
inverse model is implicitly obtained from it by online numerical inversion instead of 
direct lookup. This is illustrated by the following algorithm: 

1. Observe sand bgoal. 
2. Perform numerical inversion: 

Search among a series of candidate actions 
a1, a2 .. , ak: 
brredict : _ forvard-llodel( s, a1, MEM) 

b~redict : = forvard-llodel(s, a2, MEM) 

beredict : _ forvard-llodel( s, ak, MEM) 

Until I TIME-OUT I 
or I beredict = bgoal I 

3. If TIME-OUT then perform experimental action else perform ak. 
4. Update MEM with (s, ak - bactual) 

A nice feature of this method is the absence of a preliminary training phase such 
as random flailing or feedback control. A variety of search techniques for numerical 
inversion can be applied. Global random search avoids local minima but is very slow 
for obtaining accurate actions, hill climbing is a robust local procedure and more 
aggressive procedures such as Newton's method can use partial derivative estimates 
from the forward model to make large second-order steps. The implementation used 
for subsequent results had a combination of global search and local hill climbing. 

In very high speed applications in which there is only time to make a small number 
of forward model predictions, it is not difficult to regain much of the speed advantage 
of directly using an inverse model by commencing the action search with ao as the 
action predicted by a learned inverse model. 

4 OTHER CONSIDERATIONS 
Actions selected by a forward memory-based learner can be expected to converge 
very quickly to the correct action in benign cases, and will not become stuck in dif­
ficult cases, provided that the memory based representation can fit the true forward 
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model. This proviso is weak compared with incremental learning control techniques 
which typically require stronger prior assumptions about the environment, such as 
near-linearity, or that an iterative function approximation procedure will avoid local 
minima. One-shot methods have an advantage in terms of number of control cy­
cles before adequate performance whereas incremental methods have the advantage 
of only requiring trivial amounts of computation per cycle. However, the simple 
memory-based formalism described so far suffers from two major problems which 
some forms of adaptive and neural controllers may avoid . 

• Brittle behaviour in the presence of outliers . 
• Poor resistance to non-stationary environments. 

Many incremental methods implicitly forget all experiences beyond a certain hori­
zon. For example, in the delta rule ~Wij = lI(y~ctual - yrredict) X j, the age beyond 
which experiences have a negligible effect is determined by the learning rate 1I. As 
a result, the detrimental effect of misleading experiences is presen t for only a fixed 
amount of time and then fades awayl . In contrast, memory-based methods remem­
ber everything for ever. Fortunately, two statistical techniques: robust regression 
and cross-validation allow extensions to the numerical inversion method in which 
we can have our cake and eat it too. 

5 USING ROBUST REGRESSION 
We can judge the quality of each experience (Xi, yd E Mem by how well it is 
predicted by the rest of the experiences. A simple measure of the ith error is the 
cross validation error, in which the experience is first removed from the memory 
before prediction. efve =1 Predict(xi, Mem - {(Xi, Yin) I. With the memory­
based formalism, in which all work takes place at prediction time, it is no more 
expensive to predict a value with one datapoint removed than with it included. 

Once we have the measure efve of the quality of each experience, we can decide 
if it is worth keeping. Robust statistics [7] offers a wide range of methods: this 
implementation uses the Median Absolute Deviation (MAD) procedure. 

6 FULL CROSS VALIDATION 
The value e~~ial = L.: efve, summed over all "good" experiences, provides a measure 
of how well the current representation fits the data. By optimizing this value with 
respect to internal learner parameters, such as the width of the local weighting 
function [(width used by kernel regression and LWR, the internal parameters can be 
found automatically. Another important set of parameters that can be optimized is 
the relative scaling of each input variable: an example of this procedure applied to a 
two-joint arm task may be found in Reference [2]. A useful feature of this procedure 
is its quick discovery (and subsequent ignoring) of irrelevant input variables. 

Cross-validation can also be used to selectively forget old inaccurate experiences 
caused by a slowly drifting or suddenly changing environment. We have already 
seen that adaptive control algorithms such as the LMS rule can avoid such problems 
because the effects of experiences decay with time. Memory based methods can also 
forget things according to a forgetfulness parameter: all observations are weighted 

IThis also has disadvantages: persistence of excitation is required and multiple tasks 
can often require relearning if they have not been practised recently. 
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by not only the distance to the Xquery but also by their age: 

Wi = exp( -(Xi - Xquery)2 / Kwidth 2 - (n - i)/ Krecau) (1) 

where we assume the ordering of the experiences' indices i is temporal, with expe­
rience n the most recent. 

We find the K recall that minimizes the recen t weighted average cross validation error 
L:?=o efve exp( -en - i)/,), where, is a human assigned 'meta-forgetfulness' con­
stant, reflecting how many experiences the learner would need in order to benefit 
from observation of an environmental change. It should be noted that, is a sub­
stantially less task dependent prescription of how far back to forget than would be 
a human specified Krecall. Some initial tests of this technique are included among 
the experiments of Section 8. 

Architecture selection is another use of cross validation. Given a family of learners, 
the member with the least cross validation error is used for subsequent predictions. 

7 COMPUTATIONAL CONSIDERATIONS 
Unless the real time between control cycles is longer than a few seconds, cross vali­
dation is too expensive to perform after every cycle. Instead it can be performed as 
a separate parallel process, updating the best parameter values and removing out­
liers every few real control cycles. The usefulness of breaking a learning control task 
into an online realtime processes and offline mental simulation was noted by [12]. 
Initially, the small number of experiences means that cross validation optimizes 
the parameters very frequently, but the time between updates increases with the 
memory size. The decreasing frequency of cross validation updates is little cause 
for concern, because as time progresses, the estimated optimal parameter values are 
expected to become decreasingly variable. 

If there is no time to make more than one memory based query per cycle, then 
memory based learning can nevertheless proceed by pushing even more of the com­
putation into the offline component. If the offline process can identify meaningful 
states relevant to the task, then it can compute, for each of them, what the optimal 
action would be. The resulting state-action pairs are then used as a policy. The 
online process then need only look up the recommended action in the policy, apply 
it and then insert (s, a, b) into the memory. 

8 COMPARATIVE TESTS 
The ultimate goal of the investigation is to produce a learning control algorithm 
which can learn to control a fairly wide family of different tasks. Some basic, very 
different, tasks have been used for the initial tests. 

The HARD task, graphed in Figure 1, is a one-dimensional direct relationship between 
action and behaviour which is both non-monotonic and discontinuous. The VARIER 
task (Figure 2) is a sinusoidal relation for which the phase continuously drifts, and 
occasionally alters catastrophically. 

LINEAR is a noisy linear relation between 4-d states, 4-d actions and 4-d behaviours. 
For these first three tasks, the goal behaviour is selected randomly on each control 
cycle. ARM (Figure 3) is a simulated noisy dynamic two-joint arm acting under 
gravity in which state is perceived in cartesian coordinates and actions are produced 
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in joint-torque coordinates. Its task is to follow the circular trajectory. BILLIARDS is 
a simulation of the real billiards robot described shortly in which 5% of experiences 
are entirely random outliers. 
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Figure 1: The HARD relation. Figure 2: VARIER relation. 

Goal Trajectory 

Figure 3: The ARM task. 

The following learning methods were tested: nearest neighbour, kernel regression 
and LWR, all searching the forward model and using a form of uncertainty-based in­
telligent experimentation [10] when the forward search proved inadequate. Another 
method under test was sole use of the inverse, learned by LWR. Finally a "best­
possible" value was obtained by numerically inverting the real simulated forward 
model instead of a learned model. 

All tasks were run for only 200 control cycles. In each case the quality of the learner 
was measured by the number of successful actions in the final hundred cycles, where 
"successful" was defined as producing behaviour within a small tolerance of bgoal . 

Results are displayed in Table 1. There is little space to discuss them in detail, 
but they generally support the arguments of the previous sections. The inverse 
model on its own was generally inferior to the forward method, even in those cases 
in which the inverse is well-defined. Outlier removal improved performance on 
the BILLIARDS task over non-robustified versions. Interestingly, outlier removal 
also greatly benefited the inverse only method. The selectively forgetful methods 
performed better than than their non-forgetful counterparts on the VARIER task, but 
in the stationary environments they did not pay a great penalty. Cross validation 
for K width was useful: for the HARD task, LWR found a very small K width but in the 
LINEAR task it unsurprisingly preferred an enormous Kwidth. 

Some experiments were also performed with a real billiards robot shown in Figure 4. 
Sensing is visual: one camera looks along the cue stick and the other looks down 
at the table. The cue stick swivels around the cue ball, which starts each shot 
at the same position. At the start of each attempt the object ball is placed at a 
random position in the half of the table opposite the cue stick. The camera above 
the table obtains the (x, y) image coordinates of the object ball, which constitute 
the state. The action is the x-coordinate of the image of the object ball on the cue 
stick camera. A motor swivels the cue stick until the centroid of the actual image 
of the object ball coincides with the chosen x-coordinate value. The shot is then 
performed and observed by the overhead camera. The behaviour is defined as the 
cushion and position on the cushion with which the object ball first collides. 
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Controller type. (K = use MAD VARIER HARD LINEAR ARM BIL'DS 
outlier removal, X = use cross-
validation for K width, R = use cross-
validation for K recall , IF = obtain 
initial candidate action from the in-
verse model then search the forward 
model.) 
Best Possible: Obtamed from nu- 100 ±O 100 ±O 75 ± 3 94± 1 82 ± 4 
merically inverting simulated world 
Inverse only, learned WIth LWR 15 ± 9 24 ± 11 7±6 76 ± 28 71 ± 5 
Inverse only, learned WIth LW R, KRX 48 ± 16 72± 8 70 ± 4 89± 4 70± 10 
LWR: IF 14± 10 11 ± 5 58 ± 4 83 ± 4 55± 12 
LWR: IF X 19± 9 72± 4 70 ± 4 89 ± 3 61 ± 9 
LWK: IF KX 22 ± 15 51 ± 27 73 ± 3 90± 3 75 ± 7 
LWK: IF KRX 54± 8 65 ±28 70 ± 5 89± 2 69 ± 7 
L W K: r'orward only, KRX 56 ± 9 53 ± 17 73 ± 1 89± 1 69± 7 
Kernel KegresslOn: IF 8±2 6±2 13 ± 3 3±2 1±1 
Kernel RegreSSion: IF KRX 15 ± 8 42 ± 21 14± 2 23 ± 10 30± 5 
Nearest Neigh bour: IF 22± 4 92± 2 O±O 44± 6 10 ± 2 
Nearest Nelghbour: IF K 26 ± 10 69± 4 O±O 40± 6 9±3 
Nearest Neigh bour: IF KR 44± 8 68± 3 O±O 40± 7 11 ± 3 
Nearest Neighbour: Forward only, 43 ± 8 66± 5 O±O 37 ± 3 8±1 
KR 

Global Lmear RegresslOn: IF 8±3 7±3 74± 5 60 ± 17 23 ± 6 
Global Lmear RegresslOn: IF KR 20 ± 13 9±2 73 ± 4 72± 3 21 ± 4 
Global Quadrattc RegresslOn: IF 14±7 5±3 64± 2 70 ± 22 40± 11 

Table 1: Relative erformance of a famil o learners on a famil p y y of tasks. Each 
combination of learner and task was run ten times to provide the mean number 
of successes and standard deviation shown in the table. 

The controller uses the memory based learner to choose the action to maximize the 
probability that the ball will enter the nearer of the two pockets at the end of the 
table. A histogram of the number of successes against trial number is shown in 
Figure 5. In this experiment, the learner was LWR using outlier removal and cross 
validation for [(width. After 100 experiences, control choice running on a Sun-4 was 
taking 0.8 seconds2 . Sinking the ball requires better than 1 % accuracy in the choice 
of action, the world contains discontinuities and there are random outliers in the 
data and so it is encouraging that within less than 100 experiences the robot had 
reached a 70% success rate--substantially better than the author can achieve. 
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2This could have been greatly improved with more appropriate hardware or better 
software techniques such as kd-trees for structuring data [11, 9]. 
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Figure 4: The billiards robot. In the 
foreground is the cue stick which at­
tempts to sink balls in the far pockets. 
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Figure 5: Frequency of successes versus 
con trol cycle for the billiards task. 
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