
Fast, Robust Adaptive Control by Learning only
Forward Models

Andrew W. Moore
MIT Artificial Intelligence Laboratory

545 Technology Square, Cambridge, MA 02139
awmGai.JD.it.edu

Abstract
A large class of motor control tasks requires that on each cycle the con­
troller is told its current state and must choose an action to achieve a
specified, state-dependent, goal behaviour. This paper argues that the
optimization of learning rate, the number of experimental control deci­
sions before adequate performance is obtained, and robustness is of prime
importance-if necessary at the expense of computation per control cy­
cle and memory requirement. This is motivated by the observation that
a robot which requires two thousand learning steps to achieve adequate
performance, or a robot which occasionally gets stuck while learning, will
always be undesirable, whereas moderate computational expense can be
accommodated by increasingly powerful computer hardware. It is not un­
reasonable to assume the existence of inexpensive 100 Mflop controllers
within a few years and so even processes with control cycles in the low
tens of milliseconds will have millions of machine instructions in which to
make their decisions. This paper outlines a learning control scheme which
aims to make effective use of such computational power.

1 MEMORY BASED LEARNING
Memory-based learning is an approach applicable to both classification and func­
tion learning in which all experiences presented to the learning box are explic­
itly remembered. The memory, Mem, is a set of input-output pairs, Mem =
{(Xl, YI), (X21 Y2), ... , (Xb Yk)}. When a prediction is required of the output of a
novel input Xquery, the memory is searched to obtain experiences with inputs close to
Xquery. These local neighbours are used to determine a locally consistent output for
the query. Three memory-based techniques, Nearest Neighbour, Kernel Regression,
and Local Weighted Regression, are shown in the accompanying figure.

571

572 Moore

j.
• o •

• • • I • I • , • , w
laput

Nearest Neighbour:
Ypredict(Xquery) = Yi where
i minimizes {(Xi - x query) 2 :
(Xi, Yi) E Mem}. There
is a general introduction
in [5], some recent appli­
cations in [11], and recent
robot learning work in [9, 3].

i · • o •

• , • • • • • , • , .e

j.
• o •

• , • I • I • Y • • M

lap.t lap.t

Kernel Regression: Also Local Weighted Regres­
known as Shepard's interpo- sion: finds the linear map­
lation or Local Weighted Av- ping Y = Ax to minimize
erages. Y;.;edict(Xquery) = the sum of weighted squares
C£ w.y.)/ L w. where Wi = of residua!s E Wj(Yi - AXi)2.
exp(-(Xi - X query)2 / K width 2)Yp!~dict IS ~hen AXquery.
[6] describes some variants LWR was mtroduced for

. robot learning control by [1].

2 A MEMORY-BASED INVERSE MODEL
An inverse model maps State x Behaviour ~ Action (8 x b ~ a). Behaviour is
the output of the system, typically the next state or time derivative of state. The
learned inverse model provides a conceptually simple controller:

1. Observe 8 and b goa1 .

2. a : - inverse-model(s, bgoal)

3. Perform action a and observe actual behaviour bactual.

4. Update MEM with (8, bactual - a): If we are ever again in state 8 and
require behaviour bactual we should apply action a.

Memory-based versions of this simple algorithm have used nearest neighbour [9]
and LWR [3]. bgoal is the goal behaviour: depending on the task it may be fixed
or it may vary between control cycles, perhaps as a function of state or time. The
algorithm provides aggressive learning: during repeated attempts to achieve the
same goal behaviour, the action which is applied is not an incrementally adjusted
version of the previous action, but is instead the action which the memory and the
memory-based learner predicts will directly achieve the required behaviour. If the
function is locally linear then the sequence of actions which are chosen are closely
related to the Secant method [4] for numerically finding the zero of a function by
bisecting the line between the closest approximations that bracket the y = 0 axis. If
learning begins with an initial error Eo in the action choice, and we wish to reduce
this error to Eo/I<, the number of learning steps is O(log log I<): subject to benign
conditions, the learner jumps to actions close to the ideal action very quickly.

A common objection to learning the inverse model is that it may be ill-defined. For
a memory-based method the problems are particularly serious because of its update
rule. It updates the inverse model near bactual and therefore in those cases in which
bgoal and bactual differ greatly, the mapping near bgoal may not change. As a result,

Fast, Robust Adaptive Control by Learning only Forward Models 573

subsequent cycles will make identical mistakes. [10] discusses this further.

3 A MEMORY-BASED FORWARD MODEL
One fix for the problem of inverses becoming stuck is the addition of random noise
to actions prior to their application. However, this can result in a large proportion
of control cycles being wasted on experiments which the robot should have been able
to predict as valueless, defeating the initial aim of learning as quickly as possible.

An alternative technique using multilayer neural nets has been to learn a forward
model, which is necessarily well defined, to train a partial inverse. Updates to the
forward model are obtained by standard supervised training, but updates to the
inverse model are more sophisticated. The local Jacobian of the forward model
is obtained and this value is used to drive an incremental change to the inverse
model [8]. In conjunction with memory-based methods such an approach has the
disadvantage that incremental changes to the inverse model loses the one-shot learn­
ing behaviour, and introduces the danger of becoming trapped in a local minimum.

Instead, this investigation only relies on learning the forward model. Then the
inverse model is implicitly obtained from it by online numerical inversion instead of
direct lookup. This is illustrated by the following algorithm:

1. Observe sand bgoal.
2. Perform numerical inversion:

Search among a series of candidate actions
a1, a2 .. , ak:
brredict : _ forvard-llodel(s, a1, MEM)

b~redict : = forvard-llodel(s, a2, MEM)

beredict : _ forvard-llodel(s, ak, MEM)

Until I TIME-OUT I
or I beredict = bgoal I

3. If TIME-OUT then perform experimental action else perform ak.
4. Update MEM with (s, ak - bactual)

A nice feature of this method is the absence of a preliminary training phase such
as random flailing or feedback control. A variety of search techniques for numerical
inversion can be applied. Global random search avoids local minima but is very slow
for obtaining accurate actions, hill climbing is a robust local procedure and more
aggressive procedures such as Newton's method can use partial derivative estimates
from the forward model to make large second-order steps. The implementation used
for subsequent results had a combination of global search and local hill climbing.

In very high speed applications in which there is only time to make a small number
of forward model predictions, it is not difficult to regain much of the speed advantage
of directly using an inverse model by commencing the action search with ao as the
action predicted by a learned inverse model.

4 OTHER CONSIDERATIONS
Actions selected by a forward memory-based learner can be expected to converge
very quickly to the correct action in benign cases, and will not become stuck in dif­
ficult cases, provided that the memory based representation can fit the true forward

574 Moore

model. This proviso is weak compared with incremental learning control techniques
which typically require stronger prior assumptions about the environment, such as
near-linearity, or that an iterative function approximation procedure will avoid local
minima. One-shot methods have an advantage in terms of number of control cy­
cles before adequate performance whereas incremental methods have the advantage
of only requiring trivial amounts of computation per cycle. However, the simple
memory-based formalism described so far suffers from two major problems which
some forms of adaptive and neural controllers may avoid .

• Brittle behaviour in the presence of outliers .
• Poor resistance to non-stationary environments.

Many incremental methods implicitly forget all experiences beyond a certain hori­
zon. For example, in the delta rule ~Wij = lI(y~ctual - yrredict) X j, the age beyond
which experiences have a negligible effect is determined by the learning rate 1I. As
a result, the detrimental effect of misleading experiences is presen t for only a fixed
amount of time and then fades awayl . In contrast, memory-based methods remem­
ber everything for ever. Fortunately, two statistical techniques: robust regression
and cross-validation allow extensions to the numerical inversion method in which
we can have our cake and eat it too.

5 USING ROBUST REGRESSION
We can judge the quality of each experience (Xi, yd E Mem by how well it is
predicted by the rest of the experiences. A simple measure of the ith error is the
cross validation error, in which the experience is first removed from the memory
before prediction. efve =1 Predict(xi, Mem - {(Xi, Yin) I. With the memory­
based formalism, in which all work takes place at prediction time, it is no more
expensive to predict a value with one datapoint removed than with it included.

Once we have the measure efve of the quality of each experience, we can decide
if it is worth keeping. Robust statistics [7] offers a wide range of methods: this
implementation uses the Median Absolute Deviation (MAD) procedure.

6 FULL CROSS VALIDATION
The value e~~ial = L.: efve, summed over all "good" experiences, provides a measure
of how well the current representation fits the data. By optimizing this value with
respect to internal learner parameters, such as the width of the local weighting
function [(width used by kernel regression and LWR, the internal parameters can be
found automatically. Another important set of parameters that can be optimized is
the relative scaling of each input variable: an example of this procedure applied to a
two-joint arm task may be found in Reference [2]. A useful feature of this procedure
is its quick discovery (and subsequent ignoring) of irrelevant input variables.

Cross-validation can also be used to selectively forget old inaccurate experiences
caused by a slowly drifting or suddenly changing environment. We have already
seen that adaptive control algorithms such as the LMS rule can avoid such problems
because the effects of experiences decay with time. Memory based methods can also
forget things according to a forgetfulness parameter: all observations are weighted

IThis also has disadvantages: persistence of excitation is required and multiple tasks
can often require relearning if they have not been practised recently.

Fast, Robust Adaptive Control by Learning only Forward Models 575

by not only the distance to the Xquery but also by their age:

Wi = exp(-(Xi - Xquery)2 / Kwidth 2 - (n - i)/ Krecau) (1)

where we assume the ordering of the experiences' indices i is temporal, with expe­
rience n the most recent.

We find the K recall that minimizes the recen t weighted average cross validation error
L:?=o efve exp(-en - i)/,), where, is a human assigned 'meta-forgetfulness' con­
stant, reflecting how many experiences the learner would need in order to benefit
from observation of an environmental change. It should be noted that, is a sub­
stantially less task dependent prescription of how far back to forget than would be
a human specified Krecall. Some initial tests of this technique are included among
the experiments of Section 8.

Architecture selection is another use of cross validation. Given a family of learners,
the member with the least cross validation error is used for subsequent predictions.

7 COMPUTATIONAL CONSIDERATIONS
Unless the real time between control cycles is longer than a few seconds, cross vali­
dation is too expensive to perform after every cycle. Instead it can be performed as
a separate parallel process, updating the best parameter values and removing out­
liers every few real control cycles. The usefulness of breaking a learning control task
into an online realtime processes and offline mental simulation was noted by [12].
Initially, the small number of experiences means that cross validation optimizes
the parameters very frequently, but the time between updates increases with the
memory size. The decreasing frequency of cross validation updates is little cause
for concern, because as time progresses, the estimated optimal parameter values are
expected to become decreasingly variable.

If there is no time to make more than one memory based query per cycle, then
memory based learning can nevertheless proceed by pushing even more of the com­
putation into the offline component. If the offline process can identify meaningful
states relevant to the task, then it can compute, for each of them, what the optimal
action would be. The resulting state-action pairs are then used as a policy. The
online process then need only look up the recommended action in the policy, apply
it and then insert (s, a, b) into the memory.

8 COMPARATIVE TESTS
The ultimate goal of the investigation is to produce a learning control algorithm
which can learn to control a fairly wide family of different tasks. Some basic, very
different, tasks have been used for the initial tests.

The HARD task, graphed in Figure 1, is a one-dimensional direct relationship between
action and behaviour which is both non-monotonic and discontinuous. The VARIER
task (Figure 2) is a sinusoidal relation for which the phase continuously drifts, and
occasionally alters catastrophically.

LINEAR is a noisy linear relation between 4-d states, 4-d actions and 4-d behaviours.
For these first three tasks, the goal behaviour is selected randomly on each control
cycle. ARM (Figure 3) is a simulated noisy dynamic two-joint arm acting under
gravity in which state is perceived in cartesian coordinates and actions are produced

576 Moore

in joint-torque coordinates. Its task is to follow the circular trajectory. BILLIARDS is
a simulation of the real billiards robot described shortly in which 5% of experiences
are entirely random outliers.

-.-----------------,

~ .
o .. .
J
G1I •

01114"'.'.
Action

~ .
o .. .
J
G1I •

Figure 1: The HARD relation. Figure 2: VARIER relation.

Goal Trajectory

Figure 3: The ARM task.

The following learning methods were tested: nearest neighbour, kernel regression
and LWR, all searching the forward model and using a form of uncertainty-based in­
telligent experimentation [10] when the forward search proved inadequate. Another
method under test was sole use of the inverse, learned by LWR. Finally a "best­
possible" value was obtained by numerically inverting the real simulated forward
model instead of a learned model.

All tasks were run for only 200 control cycles. In each case the quality of the learner
was measured by the number of successful actions in the final hundred cycles, where
"successful" was defined as producing behaviour within a small tolerance of bgoal .

Results are displayed in Table 1. There is little space to discuss them in detail,
but they generally support the arguments of the previous sections. The inverse
model on its own was generally inferior to the forward method, even in those cases
in which the inverse is well-defined. Outlier removal improved performance on
the BILLIARDS task over non-robustified versions. Interestingly, outlier removal
also greatly benefited the inverse only method. The selectively forgetful methods
performed better than than their non-forgetful counterparts on the VARIER task, but
in the stationary environments they did not pay a great penalty. Cross validation
for K width was useful: for the HARD task, LWR found a very small K width but in the
LINEAR task it unsurprisingly preferred an enormous Kwidth.

Some experiments were also performed with a real billiards robot shown in Figure 4.
Sensing is visual: one camera looks along the cue stick and the other looks down
at the table. The cue stick swivels around the cue ball, which starts each shot
at the same position. At the start of each attempt the object ball is placed at a
random position in the half of the table opposite the cue stick. The camera above
the table obtains the (x, y) image coordinates of the object ball, which constitute
the state. The action is the x-coordinate of the image of the object ball on the cue
stick camera. A motor swivels the cue stick until the centroid of the actual image
of the object ball coincides with the chosen x-coordinate value. The shot is then
performed and observed by the overhead camera. The behaviour is defined as the
cushion and position on the cushion with which the object ball first collides.

Fast, Robust Adaptive Control by Learning only Forward Models 577

Controller type. (K = use MAD VARIER HARD LINEAR ARM BIL'DS
outlier removal, X = use cross-
validation for K width, R = use cross-
validation for K recall , IF = obtain
initial candidate action from the in-
verse model then search the forward
model.)
Best Possible: Obtamed from nu- 100 ±O 100 ±O 75 ± 3 94± 1 82 ± 4
merically inverting simulated world
Inverse only, learned WIth LWR 15 ± 9 24 ± 11 7±6 76 ± 28 71 ± 5
Inverse only, learned WIth LW R, KRX 48 ± 16 72± 8 70 ± 4 89± 4 70± 10
LWR: IF 14± 10 11 ± 5 58 ± 4 83 ± 4 55± 12
LWR: IF X 19± 9 72± 4 70 ± 4 89 ± 3 61 ± 9
LWK: IF KX 22 ± 15 51 ± 27 73 ± 3 90± 3 75 ± 7
LWK: IF KRX 54± 8 65 ±28 70 ± 5 89± 2 69 ± 7
L W K: r'orward only, KRX 56 ± 9 53 ± 17 73 ± 1 89± 1 69± 7
Kernel KegresslOn: IF 8±2 6±2 13 ± 3 3±2 1±1
Kernel RegreSSion: IF KRX 15 ± 8 42 ± 21 14± 2 23 ± 10 30± 5
Nearest Neigh bour: IF 22± 4 92± 2 O±O 44± 6 10 ± 2
Nearest Nelghbour: IF K 26 ± 10 69± 4 O±O 40± 6 9±3
Nearest Neigh bour: IF KR 44± 8 68± 3 O±O 40± 7 11 ± 3
Nearest Neighbour: Forward only, 43 ± 8 66± 5 O±O 37 ± 3 8±1
KR

Global Lmear RegresslOn: IF 8±3 7±3 74± 5 60 ± 17 23 ± 6
Global Lmear RegresslOn: IF KR 20 ± 13 9±2 73 ± 4 72± 3 21 ± 4
Global Quadrattc RegresslOn: IF 14±7 5±3 64± 2 70 ± 22 40± 11

Table 1: Relative erformance of a famil o learners on a famil p y y of tasks. Each
combination of learner and task was run ten times to provide the mean number
of successes and standard deviation shown in the table.

The controller uses the memory based learner to choose the action to maximize the
probability that the ball will enter the nearer of the two pockets at the end of the
table. A histogram of the number of successes against trial number is shown in
Figure 5. In this experiment, the learner was LWR using outlier removal and cross
validation for [(width. After 100 experiences, control choice running on a Sun-4 was
taking 0.8 seconds2 . Sinking the ball requires better than 1 % accuracy in the choice
of action, the world contains discontinuities and there are random outliers in the
data and so it is encouraging that within less than 100 experiences the robot had
reached a 70% success rate--substantially better than the author can achieve.

ACKNOWLEDGEMENTS
Some of the work discussed in this paper is being performed in collaboration with Chris
Atkeson. The robot cue stick was designed and built by Wes Huang with help from Ger­
rit van Zyl. Dan Hill also helped considerably with the billiards robot. The author is
supported by a Postdoctoral Fellowship from SERC/NATO. Support was provided un­
der Air Force Office of Scien tific Research gran t AFOSR-89-0500 and a National Science
Foundation Presidential Young Investigator Award to Christopher G. Atkeson.

2This could have been greatly improved with more appropriate hardware or better
software techniques such as kd-trees for structuring data [11, 9].

578 Moore

Figure 4: The billiards robot. In the
foreground is the cue stick which at­
tempts to sink balls in the far pockets.

References

10

9

8

! 7

&"
r- 5

J ..
e 3
::I
Z :z

1

o 1
o :zo 40 60 80 100

Trial number (batches of 10)

Figure 5: Frequency of successes versus
con trol cycle for the billiards task.

[1] C. G. Atkeson. Using Local Models to Control Movement. In Proceedings of Neural
Information Processing Systems Conference, November 1989.

[2] C. G. Atkeson. Memory-Based Approaches to Approximating Continuous Functions.
Technical report, M. I. T. Artificial Intelligence Laboratory, 1990.

[3] C. G. Atkeson and D. J. Reinkensmeyer. Using Associative Content-Addressable
Memories to Control Robots. In Miller, Sutton, and Werbos, editors, Neural Networks
for Control. MIT Press, 1989.

[4] S. D. Conte and C. De Boor. Elementary Numerical Analysis. McGraw Hill, 1980.

[5] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John Wiley
& Sons, 1973.

[6] R. Franke. Scattered Data Interpolation: Tests of Some Methods. Mathematics of
Computation, 38(157), January 1982.

[7] F. Hampbell, P. Rousseeuw, E. Ronchetti, and W. Stahel. Robust Statistics. Wiley
International, 1985.

[8] M. 1. Jordan and D. E. Rumelhart. Forward Models: Supervised Learning with a
Distal Teacher. Technical report, M. I. T., July 1990.

[9] A. W. Moore. Efficient Memory-based Learning for Robot Control. PhD. Thesis;
Technical Report No. 209, Computer Laboratory, University of Cambridge, October
1990.

[10] A. W. Moore. Knowledge of Knowledge and Intelligent Experimentation for Learning
Control. In Proceedings of the 1991 Seattle International Joint Conference on Neural
Networks, July 1991.

[11] S. M. Omohundro. Efficient Algorithms with Neural Network Behaviour. Journal of
Complex Systems, 1(2):273-347, 1987.

[12] R. S. Sutton. Integrated Architecture for Learning, Planning, and Reacting Based
on Approximating Dynamic Programming. In Proceedings of the 7th International
Conference on Machine Learning. Morgan Kaufman, June 1990.

