
A Comparison of Projection Pursuit and Neural
Network Regression Modeling

Jellq-Nellg Hwang, Hang Li,
Information Processing Laboratory

Dept. of Elect. Engr., FT-lO
University of Washington

Seattle WA 98195

Martin Maechler, R. Douglas Martin, Jim Schimert
Department of Statistics

Mail Stop: GN-22
University of Washington

Seattle, WA 98195

Abstract

Two projection based feedforward network learning methods for model­
free regression problems are studied and compared in this paper: one is
the popular back-propagation learning (BPL); the other is the projection
pursuit learning (PPL). Unlike the totally parametric BPL method, the
PPL non-parametrically estimates unknown nonlinear functions sequen­
tially (neuron-by-neuron and layer-by-Iayer) at each iteration while jointly
estimating the interconnection weights. In terms of learning efficiency,
both methods have comparable training speed when based on a Gauss­
Newton optimization algorithm while the PPL is more parsimonious. In
terms of learning robustness toward noise outliers, the BPL is more sensi­
tive to the outliers.

1 INTRODUCTION

The back-propagation learning (BPL) networks have been used extensively for es­
sentially two distinct problem types, namely model-free regression and classification,

1159

1160 Hwang, Li, Maechler, Martin, and Schimert

which have no a priori assumption about the unknown functions to be identified
other than imposes a certain degree of smoothness. The projection pursuit learning
(PPL) networks have also been proposed for both types of problems (Friedman85
[3]), but to date there appears to have been much less actual use of PPLs for both
regression and classification than of BPLs. In this paper, we shall concentrate on re­
gression modeling applications of BPLs and PPLs since the regression setting is one
in which some fairly deep theory is available for PPLs in the case of low-dimensional
regression (Donoh089 [2], Jones87 [6]).

A multivariate model-free regression problem can be stated as follows: given n
pairs of vector observations, (Yl , Xl) = (Yll,···, Ylq; Xll,···, Xlp), which have been
generated from unknown models

YIi=gi(XI)+tli, 1=1,2,·.·,n; i=I,2,···,q (1)
where {y,} are called the multivariable "response" vector and {x,} are called the
"independent variables" or the "carriers". The {gd are unknown smooth non­
parametric (model-free) functions from p-dimensional Euclidean space to the real
line, i.e., gi: RJ> ~ R, Vi. The {tli} are random variables with zero mean,
E(tli] = 0, and independent of {x,}. Often the {tli} are assumed to be independent
and identically distributed (iid) as well.

The goal of regression is to generate the estimators, 91, 92, ... , 9q, to best approxi­
mate the unknown functions, gl, g2, ... , gq, so that they can be used for prediction
of a new Y given a new x: Yi = gi(X), Vi.

2 A TWO-LAYER PERCEPTRON AND
BACK-PROPAGATION LEARNING

Several recent results have shown that a two-layer (one hidden layer) perceptron
with sigmoidal nodes can in principle represent any Borel-measurable function to
any desired accuracy, assuming "enough" hidden neurons are used. This, along with
the fact that theoretical results are known for the PPL in the analogous two-layer
case, justifies focusing on the two-layer perceptron for our studies here.

2.1 MATHEMATICAL FORMULATION

A two-layer percept ron can be mathematically formulated as follows:

Yi

p

L WkjXj - (h = wf x - (h, k = 1, 2,
j=1

m m

k=l k=1

m

(2)

where Uk denotes the weighted sum input of the kth neuron in the hidden layer;
Ok denotes the bias of the kth neuron in the hidden layer; Wkj denotes the input­
layer weight linked between the kth hidden neuron and the jth neuron of the input

A Comparison of Projection Pursuit and Neural Network Regression Modeling 1161

layer (or ph element of the input vector x); f3ik denotes the output-layer weight
linked between the ith output neuron and the kth hidden neuron; fk is the nonlinear
activation function, which is usually assumed to be a fixed monotonically increasing
(logistic) sigmoidal function, u(u) = 1/(1 + e-U).

The above formulation defines quite explicitly the parametric representation of
functions which are being used to approximate {gi(X), i = 1,2"", q}. A sim­
ple reparametrization allows us to write gi(X) in the form:

m T
A() "'"' akx-/-lk gj x = ~ f3ikU()

k=l Sk
(3)

where ak is a unit length version of weight vector Wk. This formulation reveals how
{gd are built up as a linear combination of sigmoids evaluated at translates (by
/-lk) and scaled (by Sk) projection of x onto the unit length vector ak.

2.2 BACK-PROPAGATION LEARNING AND ITS VARIATIONS

Historically, the training of a multilayer perceptron uses back-propagation learning
(BPL). There are two common types of BPL: the batch one and the sequentialone.
The batch BPL updates the weights after the presentation of the complete set of
training data. Hence, a training iteration incorporates one sweep through all the
training patterns. On the other hand, the sequential BPL adjusts the network
parameters as training patterns are presented, rather than after a complete pass
through the training set. The sequential approach is a form of Robbins-Monro
Stochastic Approximation.

While the two-layer perceptron provides a very powerful nonparametric modeling
capability, the BPL training can be slow and inefficient since only the first derivative
(or gradient) information about the training error is utilized. To speed up the train­
ing process, several second-order optimization algorithms, which take advantage of
second derivative (or Hessian matrix) information, have been proposed for training
perceptrons (Hwang90 [4]). For example, the Gauss-Newton method is also used in
the PPL (Friedman85 [3]).

The fixed nonlinear nodal (sigmoidal) function is a monotone non decreasing differ­
entiable function with very simple first derivative form, and possesses nice properties
for numerical computation. However, it does not interpolate/extrapolate efficiently
in a wide variety of regression applications. Several attempts have been proposed to
improve the choice of nonlinear nodal functions; e.g., the Gaussian or bell-shaped
function, the locally tuned radial basis functions, and semi-parametric (non-fixed
nodal function) nonlinear functions used in PPLs and hidden Markov models.

2.3 RELATIONSHIP TO KERNEL APPROXIMATION AND DATA
SMOOTHING

It is instructive to compare the two-layer perceptron approximation in Eq. (3)
with the well-known kernel method for regression. A kernel K(.) is a non-negative
symmetric function which integrates to unity. Most kernels are also unimodal, with

1162 Hwang, Li, Maechler, Martin, and Schimert

mode at the origin, K(tl) ~ K(t2), 0 < tl < t2. A kernel estimate of gi(X) has the
form

_ ~ 1 IIx - xIII
gK,i(X) = ~ Yli hq K(h9), (4)

1=1

where h is a bandwidth parameter and q is the dimension of YI vector. Typically a
good value of h will be chosen by a data-based cross-validation method. Consider for
a moment the special case of the kernel approximator and the two-layer perceptron
in Eq. (3) respectively, with scalar YI and XI, i.e., with p = q = 1 (hence unit length
interconnection weight Q' = 1 by definition):

~ .!.K(Ilx - xdl) = ~ :"K(x - XI)
~ YI h h ~ YI h h' (5)
1=1 1=1
m

g(X) L ,BkO"(X - Ilk)
k=1 Sk

(6)

This reveals some important connections between the two approaches.

Suppose that for g(x), we set 0" = K, i.e., 0" is a kernel and in fact identical to the
kernel K, and that ,Bk,llk,sk = s have been chosen (trained), say by BPL. That is,
all {sd are constrained to a single unknown parameter value s. In general, m < n,
or even m is a modest fraction of n when the unknown function g(x) is reasonably
smooth. Furthermore, suppose that h has been chosen by cross validation. Then one
can expect 9K(X) ~ gq(x), particularly in the event that the {1lA:} are close to the
observed values {x,} and X is close to a specific Ilk value (relative to h). However,
in this case where we force Sk = S, one might expect gK(X) to be a somewhat better
estimate overall than 9q(x), since the former is more local in character.

On the other hand, when one removes the restriction Sk = s, then BPL leads
to a local bandwidth selection, and in this case one may expect gq(x) to provide
better approximation than 9K(X) when the function g(x) has considerably varying
curvature, gll(X), and/or considerably varying error variance for the noise (Ii in Eq.
(1). The reason is that a fixed bandwidth kernel estimate can not cope as well with
changing curvature and/or noise variance as can a good smoothing method which
uses a good local bandwidth selection method. A small caveat is in order: if m is
fairly large, the estimation of a separate bandwidth for each kernel location, Ilk, may
cause some increased variability in gq (x) by virtue of using many more parameters
than are needed to adequately represent a nearly optimal local bandwidth selection
method. Typically a nearly optimal local bandwidth function will have some degree
of smoothness, which reflects smoothly varying curvature and/or noise variance, and
a good local bandwidth selection method should reflect the smoothness constraints.
This is the case in the high-quality "supersmoother", designed for applications like
the PPL (to be discussed), which uses cross-validation to select bandwidth locally
(Friedman85 [3]), and combines this feature with considerable speed.

The above arguments are probably equally valid without the restriction u = J(, be­
cause two sigmoids of opposite signs (via choice of two {,Bk}) that are appropriately

A Comparison of Projection Pursuit and Neural Network Regression Modeling 1163

shifted, will approximate a kernel up to a scaling to enforce unity area. However,
there is a novel aspect: one can have a separate local bandwidth for each half of
the kernel, thereby using an asymmetric kernel, which might improve the approxi­
mation capabilities relative to symmetric kernels with a single local bandwidth in
some situations.

In the multivariate case, the curse of dimensionality will often render useless the
kernel approximator 9K,i(X) given by Eq. (4). Instead one might consider using a
projection pursuit kernel (PPK) approximator :

n mIT T

9PPK,i(X) = LL Yli hk J«(1:kX~kD:kXI)
1=1 k=l

(7)

where a different bandwidth hk is used for each direction D:k . In this case, the
similarities and differences between the PPK estimate and the BPL estimate 9q,i(X)
become evident.

The main difference between the two methods is that PPK performs explicit smooth­
ing in each direction D:k using a kernel smoother, whereas BPL does implicit smooth­
ing with both fJk (replacing Yli/ hk) and /-lk (replacing aT XI) being determined by
nonlinear least squares optimization. In both PPK and BPL, the D:k and hk are
determined by nonlinear optimization (cross-validation choices of bandwidth pa­
rameters are inherently nonlinear optimization problems) (Friedman85 [3]).

3 PROJECTION PURSUIT LEARNING NETWORKS

The projection pursuit learning (PPL) is a statistical procedure proposed for mul­
tivariate data analysis using a two-layer network given in Eq. (2). This procedure
derives its name from the fact that it interprets high dimensional data through
well-chosen lower-dimensional projections. The "pursuit" part of the name refers
to optimization with respect to the projection directions.

3.1 COMPARATIVE STRUCTURES OF PPL AND BPL

Similar to a BPL perceptron, a PPL network forms projections of the data in
directions determined from the interconnection weights. However, unlike a BPL
perceptron, which employs a fixed set of nonlinear (sigmoidal) functions, a PPL
non-parametrically estimates the nonlinear nodal functions based on nonlinear op­
timization approach which involves use of a one-dimensional data-smoother (e.g., a
least squares estimator followed by a variable window span data averaging mech­
anism) (Friedman85 [3]) . Therefore, it is important to note that a PPL network
is a semi-parametric learning network, which consists of both parametrically and
non-parametrically estimated elements. This is in contrast to a BPL perceptron,
which is a completely parametric model.

3.2 LEARNING STRATEGIES OF PPL

In comparison with a batch BPL, which employs either 1st-order gradient descent or
2nd-order Newton-like methods to estimate the weights of all layers simultaneously

1164 Hwang, Li, Maechler, Martin, and Schimert

after all the training patterns are presented, a PPL learns neuron-by-neuron and
layer-by-Iayer cyclically after all the training patterns are presented. Specifically, it
applies linear least squares to estimate the output-layer weights, a one-dimensional
data smoother to estimate the nonlinear nodal functions of each hidden neuron,
and the Gauss-Newton nonlinear least squares method to estimate the input-layer
weights.

The PPL procedure uses the batch learning technique to iteratively minimize the
mean squared error, E, over all the training data. All the parameters to be esti­
mated are hierarchically divided into m groups (each associated with one hidden
neuron), and each group, say the kth group, is further divided into three subgroups:
the output-layer weights, {,Bik, i = 1"", q}, connected to the kth hidden neuron;
the nonlinear function, h(u), of the kth hidden neuron; and the input-layer weights,
{Wkj, j = 1"" ,p}, connected to the kth hidden neuron. The PPL starts from up­
dating the parameters associated with the first hidden neuron (group) by updating
each subgroup, {,Bid, h(u), and {Wlj} consecutively (layer-by-Iayer) to minimize
the mean squared error E. It then updates the parameters associated with the sec­
ond hidden neuron by consecutively updating {,Bi2}, h(u), and {W2j}. A complete
updating pass ends at the updating of the parameters associated with the mth (the
last) hidden neuron by consecutively updating {,Bim}, fm(u), and {wmj}. Repeated
updating passes are made over all the groups until convergence (i.e., in our studies

of Section 4, we use the stopping criterion that
prespecified small constant, ~ = 0.005).

IE(new)_E(old)1
E(old) be smaller than a

4 LEARNING EFFICIENCY IN BPL AND PPL

Having discussed the "parametric" BPL and the "semi-parametric" PPL from struc­
tural, computational, and theoretical viewpoints, we have also made a more prac­
tical comparison of learning efficiency via a simulation stUdy. For simplicity of
comparison, we confine the simulations to the two-dimensional univariate case, i.e.,
p = 2, q = 1. This is an important situation in practice, because the models can
be visualized graphically as functions y = g(Xl' X2).

4.1 PROTOCOLS OF THE SIMULATIONS

Nonlinear Functions: There are five nonlinear functions gU) : [0,1]2 --+ R in­
vestigated (Maechler90 [7]), which are scaled such that the standard deviation is 1
(for a large regular grid of 2500 points on [0,1]2), and translated to make the range
nonnegative.

Training and Test Data: Two independent variables (carriers) (Xll' X12)
were generated from the uniform distribution U([O,I]2), i.e., the abscissa values
{(Xll' X12)} were generated as uniform random variates on [0,1] and independent
from each other. We generated 225 pairs {(xu, X12)} of abscissa values, and used
this same set for experiments of all five different functions, thus eliminating an
unnecessary extra random component of the simulation. In addition to one set of
noiseless training data, another set of noisy training data was also generated by
adding iid Gaussian noises.

A Comparison of Projection Pursuit and Neural Network Regression Modeling 1165

Algorithm Used: The PPL simulations were conducted using the S-Plus pack­
age (S-Plus90 [1]) implementation of PPL, where 3 and 5 hidden neurons were tried
(with 5 and 7 maximum working hidden neurons used separately to avoid the overfit­
ting). The S-Plus implementation is based on the Friedman code (Friedman85 [3]),
which uses a Gauss-Newton method for updating the lower layer weights. To obtain
a fair comparison, the BPL was implemented using a batch Gauss-Newton method
(rather than the usual gradient descent, which is slower) on two-layer perceptrons
with linear output neurons and nonlinear sigmoidal hidden neurons (Hwang90 [4],
Hwang9I [5]), where 5 and 10 hidden neurons were tried.

Independent Test Data Set: The assessment of performance was done by com­
paring the fitted models with the "true" function counterparts on a large indepen­
dent test set. Throughout all the simulations, we used the same set of test data for
performance assessment, i.e., {g(j)(Xll, X/2)}, of size N = 10000, namely a regularly
spaced grid on [0,1]2, defined by its marginals.

4.2 SIMULATION RESULTS IN LEARNING EFFICIENCY

To summarize the simulation results in learning efficiency, we focused on the chosen
three aspects: accuracy, parsimony, and speed.

Learning Accuracy: The accuracy determined by the absolute L2 error measure
of the independent test data in both learning methods are quite comparable either
trained by noiseless or noisy data (Hwang9I [5]). Note that our comparisons are
based on 5 & 10 hidden neurons of BPLs and 3 & 5 hidden neurons of PPLs.
The reason of choosing different number of hidden neurons will be explained in the
learning parsimony section.

Learning Parsimony: In comparison with BPL, the PPL is more parsimonious
in training all types of nonlinear functions, i.e., in order to achieve comparable accu­
racy to the BPLs for a two-layer perceptrons, the PPLs require fewer hidden neurons
(more parsimonious) to approximate the desired true function (Hwang9I [5]). Sev­
eral factors may contribute to this favorable performance. First and foremost, the
data-smoothing technique creates more pertinent nonlinear nodal functions, so the
network adapts more efficiently to the observation data without using too many
terms (hidden neurons) of interpolative projections. Secondly, the batch Gauss­
Newton BPL updates all the weights in the network simultaneously while the PPL
updates cyclically (neuron-by-neuron and layer-by-layer), which allows the most re­
cent updating information to be used in the subsequent updating. That is, more
important projection directions can be determined first so that the less important
projections can have a easier search (the same argument used in favoring the Gauss­
Seidel method over the Jacobi method in an iterative linear equation solver).

Learning Speed: As we reported earlier (Maechler90 [7]), the PPL took much
less time (1-2 order of magnitude speedup) in achieving accuracy comparable with
that of the sequential gradient descent BPL. Interestingly, when compared with the
batch Gauss-Newton BPL, the PPL took quite similar amount of time over all the
simulations (under the same number of hidden neurons and the same convergence

1166 Hwang, Li, Maechler, Martin, and Schimert

threshold e = 0.005). In all simulations, both the BPLs and PPLs can converge
under 100 iterations most of the time.

5 SENSITIVITY TO OUTLIERS

Both BPL's and PPL's are types of nonlinear least squares estimators. Hence like
all least squares procedures, they are all sensitive to outliers. The outliers may
come from large errors in measurements, generated by heavy tailed deviations from
a Gaussian distribution for the noise iii in Eq. (1).

When in presence of additive Gaussian noises without outliers, most functions can
be well approximated by 5-10 hidden neurons using BPL or with 3-5 hidden neurons
using PPL. When the Gaussian noise is altered by adding one outlier, the BPL with
5-10 hidden neurons can still approximate the desired function reasonably well in
general at the sacrifice of the magnified error around the vicinity of the outlier. If
the number of outliers increases to 3 in the same corner, the BPL can only get
a "distorted" approximation of the desired function. On the other hand, the PPL
with 5 hidden neurons can successfully approximate the desired function and remove
the single outlier. In case of three outliers, the PPL using simple data smoothing
techniques can no longer keep its robustness in accuracy of approximation.

Acknowledgements

This research was partially supported through grants from the National Science
Foundation under Grant No. ECS-9014243.

References

[1] S-Plus Users Manual (Version 3.0). Statistical Science Inc., Seattle, WA, 1990.

[2] D.L. Donoho and I.M. Johnstone. Projection-based approximation and a du­
ality with kernel methods. The Annals of Statistics, Vol. 17, No.1, pp. 58-106,
1989.

[3] J .H. Friedman. Classification and multiple regression through projection pur­
suit. Technical Report No. 12, Department of Statistics, Stanford University,
January 1985.

[4] J. N. Hwang and P. S. Lewis. From nonlinear optimization to neural network
learning. In Proc. 24th Asilomar Conf. on Signals, Systems, & Computers, pp.
985-989, Pacific Grove, CA, November 1990.

[5] J. N. Hwang, H. Li, D. Martin, J. Schimert. The learning parsimony of pro­
jection pursuit and back-propagation networks. In 25th Asilomar Conf. on
Signals, Systems, & Computers, Pacific Grove, CA, November 1991.

[6] L.K. Jones. On a conjecture of Huber concerning the convergence of projection
pursuit regression. The Annals of Statistics, Vol. 15, No. 2,880-882, 1987.

[7] M. Maechler, D. Martin, J. Schimert, M. Csoppenszky and J. N. Hwang. Pro­
jection pursuit learning networks for regression. in Proc. 2nd Int'l Conf. Tools
for AI, pp. 350-358, Washington D.C., November 1990.

