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Abstract 

Two projection based feedforward network learning methods for model­
free regression problems are studied and compared in this paper: one is 
the popular back-propagation learning (BPL); the other is the projection 
pursuit learning (PPL). Unlike the totally parametric BPL method, the 
PPL non-parametrically estimates unknown nonlinear functions sequen­
tially (neuron-by-neuron and layer-by-Iayer) at each iteration while jointly 
estimating the interconnection weights. In terms of learning efficiency, 
both methods have comparable training speed when based on a Gauss­
Newton optimization algorithm while the PPL is more parsimonious. In 
terms of learning robustness toward noise outliers, the BPL is more sensi­
tive to the outliers. 

1 INTRODUCTION 

The back-propagation learning (BPL) networks have been used extensively for es­
sentially two distinct problem types, namely model-free regression and classification, 
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which have no a priori assumption about the unknown functions to be identified 
other than imposes a certain degree of smoothness. The projection pursuit learning 
(PPL) networks have also been proposed for both types of problems (Friedman85 
[3]), but to date there appears to have been much less actual use of PPLs for both 
regression and classification than of BPLs. In this paper, we shall concentrate on re­
gression modeling applications of BPLs and PPLs since the regression setting is one 
in which some fairly deep theory is available for PPLs in the case of low-dimensional 
regression (Donoh089 [2], Jones87 [6]). 

A multivariate model-free regression problem can be stated as follows: given n 
pairs of vector observations, (Yl , Xl) = (Yll,···, Ylq; Xll,···, Xlp ), which have been 
generated from unknown models 

YIi=gi(XI)+tli, 1=1,2,·.·,n; i=I,2,···,q (1) 
where {y,} are called the multivariable "response" vector and {x,} are called the 
"independent variables" or the "carriers". The {gd are unknown smooth non­
parametric (model-free) functions from p-dimensional Euclidean space to the real 
line, i.e., gi: RJ> ~ R, Vi. The {tli} are random variables with zero mean, 
E(tli] = 0, and independent of {x,}. Often the {tli} are assumed to be independent 
and identically distributed (iid) as well. 

The goal of regression is to generate the estimators, 91, 92, ... , 9q, to best approxi­
mate the unknown functions, gl, g2, ... , gq, so that they can be used for prediction 
of a new Y given a new x: Yi = gi(X), Vi. 

2 A TWO-LAYER PERCEPTRON AND 
BACK-PROPAGATION LEARNING 

Several recent results have shown that a two-layer (one hidden layer) perceptron 
with sigmoidal nodes can in principle represent any Borel-measurable function to 
any desired accuracy, assuming "enough" hidden neurons are used. This, along with 
the fact that theoretical results are known for the PPL in the analogous two-layer 
case, justifies focusing on the two-layer perceptron for our studies here. 

2.1 MATHEMATICAL FORMULATION 

A two-layer percept ron can be mathematically formulated as follows: 

Yi 

p 

L WkjXj - (h = wf x - (h, k = 1, 2, 
j=1 

m m 

k=l k=1 

m 

(2) 

where Uk denotes the weighted sum input of the kth neuron in the hidden layer; 
Ok denotes the bias of the kth neuron in the hidden layer; Wkj denotes the input­
layer weight linked between the kth hidden neuron and the jth neuron of the input 



A Comparison of Projection Pursuit and Neural Network Regression Modeling 1161 

layer (or ph element of the input vector x); f3ik denotes the output-layer weight 
linked between the ith output neuron and the kth hidden neuron; fk is the nonlinear 
activation function, which is usually assumed to be a fixed monotonically increasing 
(logistic) sigmoidal function, u( u) = 1/(1 + e-U ). 

The above formulation defines quite explicitly the parametric representation of 
functions which are being used to approximate {gi(X), i = 1,2"", q}. A sim­
ple reparametrization allows us to write gi(X) in the form: 

m T 
A() "'"' akx-/-lk gj x = ~ f3ikU( ) 

k=l Sk 
(3) 

where ak is a unit length version of weight vector Wk. This formulation reveals how 
{gd are built up as a linear combination of sigmoids evaluated at translates (by 
/-lk) and scaled (by Sk) projection of x onto the unit length vector ak. 

2.2 BACK-PROPAGATION LEARNING AND ITS VARIATIONS 

Historically, the training of a multilayer perceptron uses back-propagation learning 
(BPL). There are two common types of BPL: the batch one and the sequentialone. 
The batch BPL updates the weights after the presentation of the complete set of 
training data. Hence, a training iteration incorporates one sweep through all the 
training patterns. On the other hand, the sequential BPL adjusts the network 
parameters as training patterns are presented, rather than after a complete pass 
through the training set. The sequential approach is a form of Robbins-Monro 
Stochastic Approximation. 

While the two-layer perceptron provides a very powerful nonparametric modeling 
capability, the BPL training can be slow and inefficient since only the first derivative 
(or gradient) information about the training error is utilized. To speed up the train­
ing process, several second-order optimization algorithms, which take advantage of 
second derivative (or Hessian matrix) information, have been proposed for training 
perceptrons (Hwang90 [4]). For example, the Gauss-Newton method is also used in 
the PPL (Friedman85 [3]). 

The fixed nonlinear nodal (sigmoidal) function is a monotone non decreasing differ­
entiable function with very simple first derivative form, and possesses nice properties 
for numerical computation. However, it does not interpolate/extrapolate efficiently 
in a wide variety of regression applications. Several attempts have been proposed to 
improve the choice of nonlinear nodal functions; e.g., the Gaussian or bell-shaped 
function, the locally tuned radial basis functions, and semi-parametric (non-fixed 
nodal function) nonlinear functions used in PPLs and hidden Markov models. 

2.3 RELATIONSHIP TO KERNEL APPROXIMATION AND DATA 
SMOOTHING 

It is instructive to compare the two-layer perceptron approximation in Eq. (3) 
with the well-known kernel method for regression. A kernel K(.) is a non-negative 
symmetric function which integrates to unity. Most kernels are also unimodal, with 
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mode at the origin, K(tl) ~ K(t2), 0 < tl < t2. A kernel estimate of gi(X) has the 
form 

_ ~ 1 IIx - xIII 
gK,i(X) = ~ Yli hq K( h9 ), (4) 

1=1 

where h is a bandwidth parameter and q is the dimension of YI vector. Typically a 
good value of h will be chosen by a data-based cross-validation method. Consider for 
a moment the special case of the kernel approximator and the two-layer perceptron 
in Eq. (3) respectively, with scalar YI and XI, i.e., with p = q = 1 (hence unit length 
interconnection weight Q' = 1 by definition): 

~ .!.K( Ilx - xdl) = ~ :"K(x - XI) 
~ YI h h ~ YI h h' (5) 
1=1 1=1 
m 

g(X) L ,BkO"( X - Ilk) 
k=1 Sk 

(6) 

This reveals some important connections between the two approaches. 

Suppose that for g( x), we set 0" = K, i.e., 0" is a kernel and in fact identical to the 
kernel K, and that ,Bk,llk,sk = s have been chosen (trained), say by BPL. That is, 
all {sd are constrained to a single unknown parameter value s. In general, m < n, 
or even m is a modest fraction of n when the unknown function g(x) is reasonably 
smooth. Furthermore, suppose that h has been chosen by cross validation. Then one 
can expect 9K(X) ~ gq(x), particularly in the event that the {1lA:} are close to the 
observed values {x,} and X is close to a specific Ilk value (relative to h). However, 
in this case where we force Sk = S, one might expect gK(X) to be a somewhat better 
estimate overall than 9q(x), since the former is more local in character. 

On the other hand, when one removes the restriction Sk = s, then BPL leads 
to a local bandwidth selection, and in this case one may expect gq(x) to provide 
better approximation than 9K(X) when the function g(x) has considerably varying 
curvature, gll(X), and/or considerably varying error variance for the noise (Ii in Eq. 
(1). The reason is that a fixed bandwidth kernel estimate can not cope as well with 
changing curvature and/or noise variance as can a good smoothing method which 
uses a good local bandwidth selection method. A small caveat is in order: if m is 
fairly large, the estimation of a separate bandwidth for each kernel location, Ilk, may 
cause some increased variability in gq (x) by virtue of using many more parameters 
than are needed to adequately represent a nearly optimal local bandwidth selection 
method. Typically a nearly optimal local bandwidth function will have some degree 
of smoothness, which reflects smoothly varying curvature and/or noise variance, and 
a good local bandwidth selection method should reflect the smoothness constraints. 
This is the case in the high-quality "supersmoother", designed for applications like 
the PPL (to be discussed), which uses cross-validation to select bandwidth locally 
(Friedman85 [3]), and combines this feature with considerable speed. 

The above arguments are probably equally valid without the restriction u = J(, be­
cause two sigmoids of opposite signs (via choice of two {,Bk}) that are appropriately 
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shifted, will approximate a kernel up to a scaling to enforce unity area. However, 
there is a novel aspect: one can have a separate local bandwidth for each half of 
the kernel, thereby using an asymmetric kernel, which might improve the approxi­
mation capabilities relative to symmetric kernels with a single local bandwidth in 
some situations. 

In the multivariate case, the curse of dimensionality will often render useless the 
kernel approximator 9K,i(X) given by Eq. (4). Instead one might consider using a 
projection pursuit kernel (PPK) approximator : 

n mIT T 

9PPK,i(X) = LL Yli hk J«(1:kX~kD:kXI) 
1=1 k=l 

(7) 

where a different bandwidth hk is used for each direction D:k . In this case, the 
similarities and differences between the PPK estimate and the BPL estimate 9q,i(X) 
become evident. 

The main difference between the two methods is that PPK performs explicit smooth­
ing in each direction D:k using a kernel smoother, whereas BPL does implicit smooth­
ing with both fJk (replacing Yli/ hk) and /-lk (replacing aT XI) being determined by 
nonlinear least squares optimization. In both PPK and BPL, the D:k and hk are 
determined by nonlinear optimization (cross-validation choices of bandwidth pa­
rameters are inherently nonlinear optimization problems) (Friedman85 [3]). 

3 PROJECTION PURSUIT LEARNING NETWORKS 

The projection pursuit learning (PPL) is a statistical procedure proposed for mul­
tivariate data analysis using a two-layer network given in Eq. (2). This procedure 
derives its name from the fact that it interprets high dimensional data through 
well-chosen lower-dimensional projections. The "pursuit" part of the name refers 
to optimization with respect to the projection directions. 

3.1 COMPARATIVE STRUCTURES OF PPL AND BPL 

Similar to a BPL perceptron, a PPL network forms projections of the data in 
directions determined from the interconnection weights. However, unlike a BPL 
perceptron, which employs a fixed set of nonlinear (sigmoidal) functions, a PPL 
non-parametrically estimates the nonlinear nodal functions based on nonlinear op­
timization approach which involves use of a one-dimensional data-smoother (e.g., a 
least squares estimator followed by a variable window span data averaging mech­
anism) (Friedman85 [3]) . Therefore, it is important to note that a PPL network 
is a semi-parametric learning network, which consists of both parametrically and 
non-parametrically estimated elements. This is in contrast to a BPL perceptron, 
which is a completely parametric model. 

3.2 LEARNING STRATEGIES OF PPL 

In comparison with a batch BPL, which employs either 1st-order gradient descent or 
2nd-order Newton-like methods to estimate the weights of all layers simultaneously 
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after all the training patterns are presented, a PPL learns neuron-by-neuron and 
layer-by-Iayer cyclically after all the training patterns are presented. Specifically, it 
applies linear least squares to estimate the output-layer weights, a one-dimensional 
data smoother to estimate the nonlinear nodal functions of each hidden neuron, 
and the Gauss-Newton nonlinear least squares method to estimate the input-layer 
weights. 

The PPL procedure uses the batch learning technique to iteratively minimize the 
mean squared error, E, over all the training data. All the parameters to be esti­
mated are hierarchically divided into m groups (each associated with one hidden 
neuron), and each group, say the kth group, is further divided into three subgroups: 
the output-layer weights, {,Bik, i = 1"", q}, connected to the kth hidden neuron; 
the nonlinear function, h( u), of the kth hidden neuron; and the input-layer weights, 
{Wkj, j = 1"" ,p}, connected to the kth hidden neuron. The PPL starts from up­
dating the parameters associated with the first hidden neuron (group) by updating 
each subgroup, {,Bid, h(u), and {Wlj} consecutively (layer-by-Iayer) to minimize 
the mean squared error E. It then updates the parameters associated with the sec­
ond hidden neuron by consecutively updating {,Bi2}, h(u), and {W2j}. A complete 
updating pass ends at the updating of the parameters associated with the mth (the 
last) hidden neuron by consecutively updating {,Bim}, fm(u), and {wmj}. Repeated 
updating passes are made over all the groups until convergence (i.e., in our studies 

of Section 4, we use the stopping criterion that 
prespecified small constant, ~ = 0.005). 

IE(new)_E(old)1 
E(old) be smaller than a 

4 LEARNING EFFICIENCY IN BPL AND PPL 

Having discussed the "parametric" BPL and the "semi-parametric" PPL from struc­
tural, computational, and theoretical viewpoints, we have also made a more prac­
tical comparison of learning efficiency via a simulation stUdy. For simplicity of 
comparison, we confine the simulations to the two-dimensional univariate case, i.e., 
p = 2, q = 1. This is an important situation in practice, because the models can 
be visualized graphically as functions y = g(Xl' X2). 

4.1 PROTOCOLS OF THE SIMULATIONS 

Nonlinear Functions: There are five nonlinear functions gU) : [0,1]2 --+ R in­
vestigated (Maechler90 [7]), which are scaled such that the standard deviation is 1 
(for a large regular grid of 2500 points on [0,1]2), and translated to make the range 
nonnegative. 

Training and Test Data: Two independent variables (carriers) (Xll' X12) 
were generated from the uniform distribution U([O,I]2), i.e., the abscissa values 
{(Xll' X12)} were generated as uniform random variates on [0,1] and independent 
from each other. We generated 225 pairs {(xu, X12)} of abscissa values, and used 
this same set for experiments of all five different functions, thus eliminating an 
unnecessary extra random component of the simulation. In addition to one set of 
noiseless training data, another set of noisy training data was also generated by 
adding iid Gaussian noises. 
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Algorithm Used: The PPL simulations were conducted using the S-Plus pack­
age (S-Plus90 [1]) implementation of PPL, where 3 and 5 hidden neurons were tried 
(with 5 and 7 maximum working hidden neurons used separately to avoid the overfit­
ting). The S-Plus implementation is based on the Friedman code (Friedman85 [3]), 
which uses a Gauss-Newton method for updating the lower layer weights. To obtain 
a fair comparison, the BPL was implemented using a batch Gauss-Newton method 
(rather than the usual gradient descent, which is slower) on two-layer perceptrons 
with linear output neurons and nonlinear sigmoidal hidden neurons (Hwang90 [4], 
Hwang9I [5]), where 5 and 10 hidden neurons were tried. 

Independent Test Data Set: The assessment of performance was done by com­
paring the fitted models with the "true" function counterparts on a large indepen­
dent test set. Throughout all the simulations, we used the same set of test data for 
performance assessment, i.e., {g(j)( Xll, X/2)}, of size N = 10000, namely a regularly 
spaced grid on [0,1]2, defined by its marginals. 

4.2 SIMULATION RESULTS IN LEARNING EFFICIENCY 

To summarize the simulation results in learning efficiency, we focused on the chosen 
three aspects: accuracy, parsimony, and speed. 

Learning Accuracy: The accuracy determined by the absolute L2 error measure 
of the independent test data in both learning methods are quite comparable either 
trained by noiseless or noisy data (Hwang9I [5]). Note that our comparisons are 
based on 5 & 10 hidden neurons of BPLs and 3 & 5 hidden neurons of PPLs. 
The reason of choosing different number of hidden neurons will be explained in the 
learning parsimony section. 

Learning Parsimony: In comparison with BPL, the PPL is more parsimonious 
in training all types of nonlinear functions, i.e., in order to achieve comparable accu­
racy to the BPLs for a two-layer perceptrons, the PPLs require fewer hidden neurons 
(more parsimonious) to approximate the desired true function (Hwang9I [5]). Sev­
eral factors may contribute to this favorable performance. First and foremost, the 
data-smoothing technique creates more pertinent nonlinear nodal functions, so the 
network adapts more efficiently to the observation data without using too many 
terms (hidden neurons) of interpolative projections. Secondly, the batch Gauss­
Newton BPL updates all the weights in the network simultaneously while the PPL 
updates cyclically (neuron-by-neuron and layer-by-layer), which allows the most re­
cent updating information to be used in the subsequent updating. That is, more 
important projection directions can be determined first so that the less important 
projections can have a easier search (the same argument used in favoring the Gauss­
Seidel method over the Jacobi method in an iterative linear equation solver). 

Learning Speed: As we reported earlier (Maechler90 [7]), the PPL took much 
less time (1-2 order of magnitude speedup) in achieving accuracy comparable with 
that of the sequential gradient descent BPL. Interestingly, when compared with the 
batch Gauss-Newton BPL, the PPL took quite similar amount of time over all the 
simulations (under the same number of hidden neurons and the same convergence 
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threshold e = 0.005). In all simulations, both the BPLs and PPLs can converge 
under 100 iterations most of the time. 

5 SENSITIVITY TO OUTLIERS 

Both BPL's and PPL's are types of nonlinear least squares estimators. Hence like 
all least squares procedures, they are all sensitive to outliers. The outliers may 
come from large errors in measurements, generated by heavy tailed deviations from 
a Gaussian distribution for the noise iii in Eq. (1). 

When in presence of additive Gaussian noises without outliers, most functions can 
be well approximated by 5-10 hidden neurons using BPL or with 3-5 hidden neurons 
using PPL. When the Gaussian noise is altered by adding one outlier, the BPL with 
5-10 hidden neurons can still approximate the desired function reasonably well in 
general at the sacrifice of the magnified error around the vicinity of the outlier. If 
the number of outliers increases to 3 in the same corner, the BPL can only get 
a "distorted" approximation of the desired function. On the other hand, the PPL 
with 5 hidden neurons can successfully approximate the desired function and remove 
the single outlier. In case of three outliers, the PPL using simple data smoothing 
techniques can no longer keep its robustness in accuracy of approximation. 
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