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We present a neural network algorithm that simultaneously performs seg­
mentation and recognition of input patterns that self-organizes to detect 
input pattern locations and pattern boundaries. We demonstrate this neu­
ral network architecture on character recognition using the NIST database 
and report on results herein. The resulting system simultaneously seg­
ments and recognizes touching or overlapping characters, broken charac­
ters, and noisy images with high accuracy. 

1 INTRODUCTION 

Standard pattern recognition systems usually involve a segmentation step prior to 
the recognition step. For example, it is very common in character recognition to 
segment characters in a pre-processing step then normalize the individual characters 
and pass them to a recognition engine such as a neural network, as in the work of 
LeCun et al. 1988, Martin and Pittman (1988). 

This separation between segmentation and recognition becomes unreliable if the 
characters are touching each other, touching bounding boxes, broken, or noisy. 
Other applications such as scene analysis or continuous speech recognition pose 
similar and more severe segmentation problems. The difficulties encountered in 
these applications present an apparent dilemma: one cannot recognize the patterns 
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Figure 1: The ISR network architecture. The input image may contain several 
characters and is presented to the network in a two-dimensional grey-scale image. 
The units in the first block, hij", have linked-local receptive field connections to the 
input image. Block 2, Hr'JI'z" has a three-dimensional linked-local receptive field 
to block 1, and the exponential unit block, block 3, has three-dimensional linked­
local receptive field connections to block 2. These linked fields insure translational 
invariance (except for edge-effects at the boundary). The exponential unit block 
has one layer for each output category. These units are the output units in the test 
mode, but hidden units during training: the exponential unit activity is summed 
over (sz) to project out the positional information, then converted to a probability 
Pz. Once trained, the exponential unit layers serve as "smart histograms" giving 
sharp peaks of activity directly above the corresponding characters in the input 
image, as shown to the left. 
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until they are segmented, yet in many cases one cannot segment the patterns until 
they are recognized. 

A solution to this apparent dilemm is to simultaneously segment and recognize 
the patterns. Integration of the segmentation and recognition steps is essential for 
further progress in these difficult pattern recognition tasks, and much effort has been 
devoted to this topic in speech recognition. For example, Hidden Markov models 
integrate the task of segmentation and recognition as a part of the word-recognition 
module. Nevertheless, little neural network research in pattern recognition has 
focused on the integrated segmentation and recognition (ISR) problem. 

There are several ways to achieve ISR in a neural network. The first use of back­
propagation ISR neural networks for character recognition was reported by Keeler, 
Rumelhart and Leow (1991a). The ISR neural network architecture is similar to 
the time-delayed neural network architecture for speech recognition used by Lang, 
Hinton, and Waibel (1990). 

The following section outlines the neural network algorithm and architecture. De­
tails and rationale for the exact structure and assumptions of the network can be 
found in Keeler et al. (1991a,b). 

2 NETWORK ARCHITECTURE AND ALGORITHM 

The basic organization of the network is illustrated in Figure 2. The input consists 
of a twcrdimensional grey-scale image representing the pattern to be processed. We 
designate this input pattern by the twcrdimensional field lex, y). In general, we 
assume that any pattern can be presented at any location and that the characters 
may touch, overlap or be broken or noisy. The input then projects to a linked-Iocal­
receptive-field block of sigmoidal hidden units (to enforce translational invariance). 
We designate the activation of the sigmoidal units in this block by hij It. 

The second block of hidden units, H 1:'J/' z', is a linked-local receptive field block of 
sigmoidal units that receives input from a three-dimensional receptive field in the 
hiilt block. In a standard neural network architecture we would normally connect 
block H to the output units. However we connect block H to a block of exponential 
units X1:J/z, The X block serves as the outputs after the network has been trained; 
there is a sheet of exponential units for each output category. These units are 
connected to block H via a linked-local receptive field structure. X1:J/z = e"''''"·, 
where the net input to the unit is 

TJ1:J/Z = L W:,~~z,H1:'J/'z' + /3z, 
1:'J/' 

(1) 

and W:,~~z' is the weight from hidden unit H1:'J/'z' to the exponential unit X1:J/z, 
Since we use linked weights in each block, the entire structure is translationally 
invariant. We make use of this property in our training algorithm and project out 
the positional information by summing over the entire layer, Sz = L1:Y X1:J/z, This 
allows us to give non-specific target information in the form of "the input contains 
a 5 and a 3, but I will not say where." We do this by converting the summed 
information in"to an output probability, pz = 1!5 •. 
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2.1 The learning Rule 

There are two objective functions that we have used to train ISR networks: cross 
entropy and total-sum-square-error. I = Ez tzlnpz + (1 - t z)ln(l - Pz), where t z 
equals 1 if pattern z is presented and 0 otherwise. Computing the gradient with 
respect to the net input to a particular exponential unit yields the following term 
in our learning rule: 

~ - (t _ ) X~yz - z pz 
8TJ~yz E~y X~yz 

(2) 

It should be noted that this is a kind of competitive rule in which the learning is 
proportional to the relative strength of the activation at the unit at a particular 
location in the X layer to the strength of activation in the entire layer. For example, 
suppose that X2,3,5 = 1000 and X5,3,5= 100. Given the above rules, X2,3,5 would 
receive about 10 times more of the output error than the unit X5,3,5. Thus the units 
compete with each other for the credit or blame of the output, and the "rich get 
richer" until the proper target is achieved. This favors self-organization of highly 
localized spikes of activity in the exponential layers directly above the particular 
character that the exponential layer detects ("smart histograms" as shown in Fig­
ure 1). Note that we never give positional information in the network but that the 
network self-organizes the exponential unit activity to discern the positional infor­
mation. The second function is the total-sum-square error, E = Ez(tz - pz)2. For 
the total-sum-square error measure, the gradient term becomes 

8E ( ) X~yz 
-~ - = t z - pz ~ )2 . 
uTJ~yz (1 + L.~y X~yz (3) 

Again this has a competitive term, but the competition is only important for X~yz 
large, otherwise the denominator is dominated by 1 for small E~y X~yz. We used 
the quadratic error function for the networks reported in the next section. 

3 NIST DATABASE RECOGNITION 

3.1 Data 

We tested this neural network algorithm on the problem of segmenting and rec­
ognizing handwritten numerals from the NIST database. This database contains 
approximately 273,000 samples of handwritten numerals collected from the Bureau 
of Census field staff. There were 50 different forms used in the study, each with 
33 fields, 28 of which contain handwritten numerals ranging in length from 2 to 10 
digits per field. We only used fields of length 2 to 6 (field numbers 6 to 30). We 
used two test sets: a small test set, Test Set A of approximately 4,000 digits, 1,000 
fields, from forms labeled f1800 to f1840 and a larger test set, Test Set B, containing 
20,000 numerals 5,000 fields and 200 forms from f1800 to f1899 and f2000 to f2199. 

We used two different training sets: a hand-segmented training set containing ap­
proximately 33,000 digits from forms mooo to m636 (the Segmented Training Set) 
and another training set that was never hand-segmented from forms mooo to f1800 
(the Unsegmented Training Set. We pre-processed the fields with a simple box­
removal and size-normalization program before they were input to the ISR net. 
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The hand segmentation was conventional in the sense that boxes were drawn around 
each of the characters, but we the boxes included any other portions of characters 
that may be nearby or touching in the natural context. Note that precise labeling of 
the characters is not essential at all. We have trained systems where only the center 
information the characters was used and found no degradation in performance. This 
is due to the fact that the system self-organizes the positional information, so it is 
only required that we know whether a character is in a field, not precisely where. 

3.2 TRAINING 

We trained several nets on the NIST database. The best training procedure was 
as follows: Step 1): train the network to an intermediate level of accuracy (96% 
or so on single characters, about 12 epochs of training set 1). Note that when we 
train on single characters, we do not need isolated characters - there are often 
portions of other nearby characters within the input field. Indeed, it helps the ISR 
performance to use this natural context. There are two reasons for this step: the 
first is speed - training goes much faster with single characters because we can use a 
small network. We also found a slight generalization accuracy benefit by including 
this training step. Step 2): copy the weights of this small network into a larger 
network and start training on 2 and 3 digit fields from the database without hand 
segmentation. These are fields numbered 6,7,11,15,19,20,23,24,27, and 28. The 
reason that we use these fields is that we do not have to hand-segment them - we 
present the fields to the net with the answer that the person was supposed to write 
in the field. (There were several cases where the person wrote the wrong numbers 
or didn't write anything. These cases were NOT screened from the training set.) 
Taking these fields from forms mooo to f1800 gives us another 45,000 characters to 
train on without ever segmenting them. 

There were several reasons that we use fields of length 2 and 3 and not fields of 
4,5,or 6 for training (even though we used these in testing). First, 3 characters 
covers the most general case: a character either has no characters on either side, 
one to the left, one to the right or one on both sides (3 characters total). If we train 
on 3 characters and duplicate the weights, we have covered the most general case for 
any number of characters, and it is clearly faster to train on shorter fields. Second, 
training with more characters confuses the net. As pointed out in our previous 
work (keeler 1991a), the learning algorithm that we use is only valid for one or no 
characters of a given type presented in the input field. Thus, the field '39541' is ok 
to train on, but the field '288' violates one of the assumptions of the training rule. 
In this case the two 8 's would be competing with each other for the answer and 
the rule favors only one winner. Even though this problem occurs 1/lth of the 
time for two digit fields, it is not serious enough to prevent the net from learning. 
(Clearly it would not learn fields of length 10 where all of the target units are 
turned on and there would be no chance for discrimination.) This problem could 
be avoided by incorporating order information into training and we have proposed 
several mechanisms for incorporating order information in training, but do not use 
them in the present system. Note that this biases the training toward the a-priori 
distribution of characters in the 2 and 3 digit fields, which is a different distribution 
from that of the testing set. 

The two networks that we used had the following architectures: Net1: Input: 28x24 
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receptive fields 6x6 shift 2x2. hidden 1: 12xllx12 receptive fields 4x4x12 shift 
2x2x12. hidden 2: 5x4x18 receptive fields 3x3x18 shift lxlxl8. exponentials (block 
3): 3x2xlO 10 summing, 10 outputs. 

Net2: Input: 28x26 receptive fields 6x6 shift 2x4. hidden 1: 12x6x12 receptive 
fields 5x4x12 shift lx2xl2. hidden 2: 8x2x18 receptive fields 5x2x18 shift lxlxl8. 
exponentials (block 3): 4xlxlO 10 summing, 10 outputs. 
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Figure 2: Average combined network performance on the NIST database. Figure 
2A shows the generalization performance of two neural networks on the NIST Test 
Set A. The individual nets Netl and Net2 (nl, n2 respectively) and the combined 
performance of nets 1 and 2 are shown where fields are rejected when the nets differ. 
The curves show results for fields ranging length 2 to 6 averaged over all fields for 
1,000 total fields, 4,000 characters. Note that Net2 is not nearly as accurate as Netl 
on fields, but that the combination of the two is significantly better than either. 
For this test set the rejection rate is 17% (83% acceptance) with an accuracy rate of 
99.3% (error rate 0.7%) overall on fields of average length 4. Figure 2B shows the 
per-field performance for test-set B (5,000 fields, 20,000 digits) Again both nets are 
used for the rejection criterion. For comparison, 99% accuracy on fields of length 4 
is achieved at 23% rejection. 

Figure 2 shows the generalization performance on the NIST database for Netl, Net2 
and their combination. For the combination, we accepted the answer only when the 
networks agreed and rejected further based on a simple confidence measure (the 
difference of the two highest activations) of each individual net . 
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Figure 3: Examples of correctly recognized fields in the NIST database. This figure 
shows examples of fields that were correctly recognized by the ISR network. Note 
the cases of touching characters, multiple touching characters, characters touching 
in multiple places, fields with extrinsic noise, broken characters and touching, broken 
characters with noise. Because of the integrated nature of the segmentation and 
recognition, the same system is able to handle all of these cases. 

4 DISCUSSION AND CONCLUSIONS 

This investigation has demonstrated that the ISR algorithm can be used for inte­
grated segmentation and recognition and achieve high-accuracy results on a large 
database of hand-printed numerals. The overall accuracy rates of 83% acceptance 
with 99.3% accuracy on fields of average length 4 is competitive with accuracy re­
ported in commercial products. One should be careful making such comparisons. 
We found a variance of 7% or more in rejection performance on different test sets 
with more than 1,000 fields (a good statistical sample). Perhaps more important 
than the high accuracy, we have demonstrated that the ISR system is able to deal 
with touching, broken and noisy characters. In other investigations we have demon­
strated the ISR system on alphabetic characters with good results, and on speech 
recognition (Keeler, Rumelhart, Zand-Biglari, 1991) where the results are slightly 
better than Hidden Markov Model results. 

There are several attractive aspects about the ISR algorithm: 1) Labeling can be 
"sloppy" in the sense that the borders of the characters do not have to be defined. 
This reduces the labor burden of getting a system running. 2) The final weights can 
be duplicated so that the system can all run in parallel. Even with both networks 
running, the number of weights and activations needed to be stored in memory is 
quite small - about 30,000 floating point numbers, and the system is quite fast 
in the feed-forward mode: peak performance is about 2.5 characters/sec on a Dec 
5000 (including everything: both networks running, input pre-processing, parsing 
the answers, printing results, etc.). This structure is ideal for VLSI implementation 
since it contains a very small number of weights (about 5,000). This is one possible 
way around the computational bottleneck facing encountered in processing complex 
scenes - the ISR net can do very-fast first-cut scene analysis with good discrimi-
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nation of similar objects - an extremely difficult task. 3) The ISR algorithm and 
architecture presents a new and powerful approach of using forward models to con­
vert position-independent training information into position-specific error signals. 
4) There is no restriction to one-dimension; The same ISR structure has been used 
for two-dimensional parsing. 

Nevertheless, there are several aspects of the ISR net that require improvement for 
future progress. First, the algorithmic assumption of having one pattern of a given 
type in the input field is too restrictive and can cause confusion in some training 
examples. Second, we are throwing some information away when we project out 
all of the positional information order information could be incorporated into the 
training information. This extra information should improve training performance 
due to the more-specific error signals. Finally, normalization is still a problem. 
We do a crude normalization, and the networks are able to segment and recognize 
characters as long as the difference in size is not too large. A factor of two in 
size difference is easily handled with the ISR system, but a factor of four decreases 
recognition accuracy by about 3-5% on the character recognition rates. This re­
quires a tighter coupling between the segmentation/recognition and normalization. 
Just as one must segment and recognize simultaneously, in many cases one can't 
properly normalize until segmentation/recognition has occurred. Fortunately, in 
most document processing applications, crude normalization to within a factor of 
two is simple to achieve, allowing high accuracy networks. 
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