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Abstract 
A method is described for generating plan-like. reflexive. obstacle 
avoidance behaviour in a mobile robot. The experiments reported here 
use a simulated vehicle with a primitive range sensor. Avoidance 
behaviour is encoded as a set of continuous functions of the perceptual 
input space. These functions are stored using CMACs and trained by a 
variant of Barto and Sutton's adaptive critic algorithm. As the vehicle 
explores its surroundings it adapts its responses to sensory stimuli so 
as to minimise the negative reinforcement arising from collisions. 
Strategies for local navigation are therefore acquired in an explicitly 
goal-driven fashion. The resulting trajectories form elegant collision­
free paths through the environment 

1 INTRODUCTION 
Following Simon's (1969) observation that complex behaviour may simply be the 
reflection of a complex environment a number of researchers (eg. Braitenberg 1986. 
Anderson and Donath 1988. Chapman and Agre 1987) have taken the view that 
interesting, plan-like behaviour can emerge from the interplay of a set of pre-wired 
reflexes with regularities in the world. However, the temporal structure in an agent's 
interaction with its environment can act as more than just a trigger for fixed reactions. 
Given a suitable learning mechanism it can also be exploited to generate sequences of new 
responses more suited to the problem in hand. Hence, this paper attempts to show that 
obstacle avoidance. a basic level of navigation competence, can be developed through 
learning a set of conditioned responses to perceptual stimuli. 

In the absence of a teacher a mobile robot can evaluate its performance only in terms of 
final outcomes. A negative reinforcement signal can be generated each time a collision 
occurs but this information te]]s the robot neither when nor how. in the train of actions 
preceding the crash, a mistake was made. In reinforcement learning this credit assignment 
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problem is overcome by forming associations between sensory input patterns and 
predictions of future outcomes. This allows the generation of internal "secondary 
reinforcement" signals that can be used to select improved responses. Several authors 
have discussed the use of reinforcement learning for navigation, this research is inspired 
primarily by that of Barto, Sutton and co-workers (1981, 1982, 1983, 1989) and Werbos 
(1990). The principles underlying reinforcement learning have recently been given a firm 
mathematical basis by Watkins (1989) who has shown that these algorithms are 
implementing an on-line, incremental, approximation to the dynamic programming 
method for detennining optimal control. Sutton (1990) has also made use of these ideas 
in fonnulating a novel theory of classical conditioning in animal learning. 

We aim to develop a reinforcement learning system that will allow a simple mobile robot 
with minimal sensory apparatus to move at speed around an indoor environment avoiding 
collisions with stationary or slow moving obstacles. This paper reports preliminary 
results obtained using a simulation of such a robot. 

2 THE ROBOT SIMULATION 
Our simulation models a three-wheeled mobi1e vehicle, called the 'sprite', operating in a 
simple two-dimensional world (500x500 cm) consisting of walls and obstacles in which 
the sprite is represented by a square box (30x30 cm). Restrictions on the acceleration and 
the braking response of the vehicle model enforce a degree of realism in its ability to 
initiate fast avoidance behaviour. The perceptual system simulates a laser range-finder 
giving the logarithmically scaled distance to the nearest obstacle at set angles from its 
current orientation. An important feature of the research has been to explore the extent 
to which spatially sparse but frequent data can support complex behaviour. We show 
below results from simulations using only three rays emitted at angles _60°, 0°, and +60°. 
The controller operates directly on this unprocessed sensory input. The continuous 
trajectory of the vehicle is approximated by a sequence of discrete time steps. In each 
interval the sprite acquires new perceptual data then performs the associated response 
generating either a change in position or a feedback signal indicating that a collision has 
occured preventing the move. After a collision the sprite reverses slightly then attempts 
to rotate and move off at a random angle (90-180° from its original heading), if this is not 
possible it is relocated to a random starting position. 

3 LEARNING ALGORITHM 
The sprite learns a multi-parameter policy (IT) and an evaluation (V). These functions 
are stored using the CMAC coarse-coding architecture (Albus 1971), and updated by a 
reinforcement learning algorithm similar to that described by Watkins (1989). The action 
functions comprising the policy are acquired as gaussian probability distributions using 
the method proposed by Williams (1988). The following gives a brief summary of the 
algorithm used. 

Let Xt be the perceptual input pattern at time t and rt the external reward, then the 
reinforcement learning error (see Barto et aI., 1989) is given by 

f: t+l = rt+l + yYt(X1+l) - \{(Xt) (1) 

where y is a constant (0 < y < 1). This error is used to adjust V and IT by gradient 
descent ie. 
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\{+ 1 (x) = \{ (x) + a. Et+ 1 mt (x) and 

111+ 1 (x) = Ilt (x) + ~ Et+ 1 ndx) 
(2) 

(3) 
where a. and ~ are learning rates and mt(x) and nt(x) are the evaluation and policy 
eligibility traces for pattern x. The eligibility traces can be thought of as activity in 
short-term memory that enables learning in the L TM store. The minimum STM 
requirement is to remember the last input pattern and the exploration gradient ~at of the 
last action taken (explained below), hence 

ml+l(x) = 1 and nl+l(x) = ~3t iff x is the current pattern, 
ml+l(x) = nl+l(x) = 0 otherwise. (4) 

Learning occurs faster, however, if the memory trace of each pattern is allowed to decay 
slowly over time with strength of activity being related to recency. Hence, if the rate of 
decay is given by A (0 <= A <= 1) then for patterns other than the current one 

ml+ 1 (x) = A mt (x) and nl+ 1 (x) = A nt (x). 
Using a decay rate of less than 1.0 the eligibility trace for any input becomes negligible 
within a short time, so in practice it is only necessary to store a list of the most recent 
patterns and actions (in our simulations only the last four values are stored). 

The policy acquired by the learning system has two elements (f and '6) corresponding to 
the desired forward and angular velocities of the vehicle. Each element is specified by a 
gaussian pdf and is encoded by two adjustable parameters denoting its mean and standard 
deviation (hence the policy as a whole consists of four continuous functions of the input). 
In each time-step an action is chosen by selecting randomly from the two distributions 
associated with the current input pattern. 

In order to update the policy the exploratory component of the action must be computed, 
this consists of a four-vector with two values for each gaussian element. Following 
Williams we define a standard gaussian density function g with parameters J.1 and 0' and 
output y such that 

(Y - IL)2 

g(y, J.1, 0') = 2 ~(J e- 202 

the derivatives of the mean and standard deviation 1 are then given by 
y - J.1 [(y - J.1)2 - a2] 

~J.1 = - and ~O' = ----
0'2 0'3 

The exploration gradient of the action as a whole is therefore the vector 
~3t = [~J.1f' ~O'f, ~J.1t'), ~o't'}]. 

(5) 

(6) 

The four policy functions and the evaluation function are each stored using a CMAC 
table. This technique is a form of coarse-coding whereby the euclidean space in which a 
function lies is divided into a set of overlapping but offset tilings. Each tiling consists 
of regular regions of pre-defined size such that all points within each region are mapped to 
a single stored parameter. The value of the function at any point is given by the average 
of the parameters stored for the corresponding regions in all of the tHings. In our 

1 In practice we use (In s) as the second adjustable parameter to ensure that the standard 
deviation of the gaussian never has a negative value (see Williams 1988 for details). 
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simulation each sensory dimension is quantised into five discrete bins resulting in a 
5X5X5 tiling, five tilings are overlaid to form each CMAC. If the input space is 
enlarged (perhaps by adding further sensors) the storage requirements can be reduced by 
using a hashing function to map all the tiles onto a smaller number of parameters. This 
is a useful economy when there are large areas of the state space that are visited rarely or 
not at all. 

4 EXPLORATION 
In order for the sprite to learn useful obstacle avoidance behaviour it has to move around 
and explore its environment. If the sprite is rewarded simply for avoiding collisions an 
optimal strategy would be to remain still or to stay within a small, safe, circular orbit. 
Therefore to force the sprite to explore its world a second source of reinforcement is used 
which is a function of its current forward velocity and encourages it to maintain an 
optimal speed. To further promote adventurous behaviour the initial policy over the 
whole state-space is for the sprite to have a positive speed. A system which has a high 
initial expectation of future rewards will settle less rapidly for a locally optimal solution 
than a one with a low expectation. Therefore the value function is set initially to the 
maximum reward attainable by the sprite. 

Improved policies are found by deviating from the currently preferred set of actions. 
However, there is a trade-off to be made between exploiting the existing policy to 
maximise the short term reward and experimenting with untried actions that have 
potentially negative consequences but may eventually lead to a better policy. This 
suggests that an annealing process should be applied to the degree of noise in the policy. 
In fact, the algorithm described above results in an automatic annealing process (Williams 
88) since the variance of each gaussian element decreases as the mean behaviour converges 
to a local maximum. However, the width of each gaussian can also increase, if the mean 
is locally sub-optimal, allowing for more exploratory behaviour. The final width of the 
gaussian depends on whether the local peak in the action function is narrow or flat on top. 
The behaviour acquired by the system is therefore more than a set of simple reflexes. 
Rather, for each circumstance, there is a range of acceptable actions which is narrow if the 
robot is in a tight corner, where its behaviour is severely constrained, but wider in more 
open spaces. 

5 RESULTS 
To test the effectiveness of the learning algorithm the performance of the sprite was 
compared before and after fifty-thousand training steps on a number of simple 
environments. Over 10 independent runs2 in the first environment shown in figure one 
the average distance travelled between collisions rose from approximately O.9m (lb) 
before learning to 47.4m (Ic) after training. At the same time the average velocity more 
than doubled to just below the optimal speed. The requirement of maintaining an 
optimum speed encourages the sprite to follow trajectories that avoid slowing down, 
stopping or reversing. However, if the sprite is placed too close to an obstacle to turn 
away safely, it can perform an n-point-turn manoeuvre requiring it to stop, back-off, turn 
and then move forward. It is thus capable of generating quite complex sequences of 
actions. 
2Each measure was calculated over a sequence of five thousand simulation-steps with learning 
disabled. 
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c) ... after training ... 
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b) Trajectories before training ... 

d) ... and in a novel environment 

Figure One: Sample Paths from the Obstacle Avoidance Simulation. 

The trajectories show the robot's movement over two thousand simulation steps before 
and after training. After a collision the robot reverses slightly then rotates to move off 
at a random angle 90-1800 from its original heading, if this is not possible it is relocated 
to a random position. Crosses indicate locations where collisions occured, circles show 
new starting positions. 
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Some differences have been found in the sprite's ability to negotiate different 
environments with the effectiveness of the avoidance learning system varying for different 
configurations of obstacles. However, only limited performance loss has been observed 
in transferring from a learned environment to an unseen one (eg. figure Id), which is 
quickly made up if the sprite is allowed to adapt its strategies to suit the new 
circumstances. Hence we are encouraged to think that the learning system is capturing 
some fairly general strategies for obstacle avoidance. 

The different kinds of tactical behaviour acquired by the sprite can be illustrated using 
three dimensional slices through the two policy functions (desired forward and angular 
velocities). Figure two shows samples of these functions recorded after fifty thousand 
training steps in an environment containing two slow moving rectangular obstacles. 
Each graph is a function of the three rays cast out by the sprite: the x and y axes show the 
depths of the left and right rays and the vertical slices correspond to different depths of the 
central ray (9, 35 and 74cm). The graphs show clearly several features that we might 
expect of effective avoidance behaviour. Most notably, there is a transition occuring over 
the three slices during which the policy changes from one of braking then reversing 
(graph a) to one of turning sharply (d) whilst maintaining speed or accelerating (e). This 
transition clearly corresponds to the threshold below which a collision cannot be avoided 
by swerving but requires backing-off instead. There is a considerable degree of left-right 
symmetry (reflection along the line left-ray=right-ray) in most of the graphs. This agrees 
with the observation that obstacle avoidance is by and large a symmetric problem. 
However some asymmetric behaviour is acquired in order to break the deadlock that arises 
when the sprite is faced with obstacles that are equidistant on both sides. 

6 CONCLUSION 
We have demonstrated that complex obstacle avoidance behaviour can arise from 
sequences of learned reactions to immediate perceptual stimu1i. The trajectories generated 
often have the appearance of planned activity since individual actions are only appropriate 
as part of extended patterns of movement. However, planning only occurs as an implicit 
part of a learning process that allows experience of rewarding outcomes to be propagated 
backwards to influence future actions taken in similar contexts. This learning process is 
effective because it is able to exploit the underlying regularities in the robot's interaction 
with its world to find behaviours that consistently achieve its goals. 

Acknowledgements 
This work was supported by the Science and Engineering Research Council. 

References 
Albus, J.S., (1971) A theory of cerebellar function. Math Biosci 10:25-61. 
Anderson, T.L., and Donath, M. (1988a) Synthesis of reflexive behaviour for a mobHe 

robot based upon a stimulus-response paradigm. SPIE Mobile Robots III, 1007:198-
210. 

Anderson, T.L., and Donath, M. (1988b) A computational structure for enforcing reactive 
behaviour in a mobile robot. SPIE Mobile Robots III 1007:370-382. 

Barto, A.G., Sutton, R.S., and Brouwer, P.S. (1981) Associative search network: A 
reinforcement learning associative memory". Biological Cybernetics 40:201-211. 



Obstacle Avoidance through Reinforcement Learning 529 

Forward Velocity Angular Velocity 

+15cm 

o o 
a) centre 9cm b) centre gem 

+15cm 

c) 35em d) 35cm 

+15cm 

e) 74cm f) 74cm 

Figure Two: Surfaces showing action policies for depth measures 
for the central ray of 9, 35 and 74 cm. 
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