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Abstract 

A vascular necrosis (AVN) of the femoral head is a common yet poten­
tially serious disorder which can be detected in its very early stages with 
magnetic resonance imaging. We have developed multi-layer perceptron 
networks, trained with conjugate gradient optimization, which diagnose 
A VN from single magnetic resonance images of the femoral head with 
100% accuracy on training data and 97% accuracy on test data. 

1 INTRODUCTION 

Diagnostic radiology may be a very natural field of application for neural networks, 
since a simple answer is desired from a complex image, and the learning process 
that human experts undergo is to a large extent a supervised learning experience 
based on looking at large numbers of images with known interpretations. Although 
many workers have applied neural nets to various types of I-dimensional medical 
data (e.g. ECG and EEG waveforms) , little work has been done on applying neural 
nets to diagnosis directly from medical images. 
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We wanted to explore the use of neural networks in diagnostic radiology by (1) 
starting with a simple but real diagnostic problem, and (2) using only actual data. 
We chose the diagnosis of avascular necrosis from magnetic resonance images as an 
ideal initial problem, because: the area in question is small and well-defined, its 
size and shape do not vary greatly between individuals, the condition (if present) is 
usually visible even at low spatial and gray level resolution on a single image, and 
real data is readily available. 

Avascular necrosis (A VN) is the deterioration of tissue due to a disruption in the 
blood supply. AVN ofthe femoral head (the ball at the upper end of the femur which 
fits into the socket formed by the hip bone) is an increasingly common clinical prob­
lem, with potentially crippling effects. Since the sole blood supply to the femoral 
head in adults traverses the femoral neck, AVN often occurs following hip fracture 
(e.g., Bo Jackson). It is now apparent that AVN can also occur as a side effect of 
treatment with corticosteroid drugs, which are commonly used for immunosuppres­
sion in transplant patients as well as for patients with asthma, rheumatoid arthritis 
and other autoimmune diseases. Although the pathogenesis of AVN secondary to 
corticosteroid use is not well understood, 6 - 10% of such patients appear to de­
velop the disorder (Ternoven et al., 1990). AVN may be detected with magnetic 
resonance imaging (MRI) even in its very early stages, as a low signal region within 
the femoral head due to loss of water-containing bone marrow. MRI is expected 
to play an important future role in screening patients undergoing corticosteroid 
therapy for AVN. 

2 METHODOLOGY 

The data set selected for analysis consisted of 125 sagittal images of femoral heads 
from T1-weighted MRI scans of 40 adult patients, with 51% showing evidence of 
AVN, from early stages to quite severe (see Fig. 1). Often both femoral heads from 
the same patient were selected (typically only one has AVN if the cause is fracture­
related while both sometimes have AVN if the cause is secondary to drug use), 
and often two or three different cross-sectional slices of the same femoral head were 
included (the appearance of AVN can change dramatically as one steps through 
different cross-sectional slices). The images were digitized and 128x128 regions 
centered on and just containing the femoral heads were manually selected. These 
128x128 subimages with 256 gray levels were averaged down to 32x32 resolution 
and to 16 gray levels for most of the trials (see Fig. 2). 

The neural networks used to analyze the data were standard feed-forward, fully­
connected multilayer perceptrons with a single hidden layer of 4 to 30 nodes and 2 
output nodes. The majority of the runs were with networks of 1024 input nodes, 
into which the 32x32 images were placed, with gray levels scaled so the input values 
ranged within +0.5. In other experiments with different input features the num­
ber of input nodes varied accordingly. Conjugate gradient optimization was used 
for training (Kramer and Sangiovanni-Vincentelli, 1989; Barnard and Cole 1989). 
Training was stopped at a maximum of 50 passes through the training set, though 
usually convergence was achieved before this point. Each training run took less 
than 1 minute on a SPARCstation 2. 
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Figure 1: Representative sagittal hip Tl weighted MR images. The small circular 
area in the center of each picture is the femoral head (the ball joint at the upper 
end of the femur). The top image shows a normal femoral head; the bottom is a 
femoral head with severe avascular necrosis. 
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Figure 2: Sample images from our 32x32 pixel, 16 gray level data set. The five 
femoral heads in the right column are free of AVN, the five in the middle column 
have varying degrees of AVN, while the left column shows five images that were 
particularly difficult for both the networks and untrained humans to distinguish 
(only the last two have AVN). 
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Table 1: Diagnostic Accuracies on Test Data 

(averages over 24 and 100 runs respectively) 

hidden nodes 50% training 80% training 

none 91.6% 92.6% 
4 92.6% 95.5% 
5 93.2% 96.4% 
6 93.8% 96.4% 
7 93.2% 97.0% 
8 92.4% 96.8% 
10 92.4% 96.1% 
30 91.2% 94.1% 

3 RESULTS 

Two sets of runs with the image data were made, with the data randomly split 50%-
50% and 80%-20% into training and test data sets respectively. In the first set , 4 
different random splits of the data, with either half in turn serving as training or test 
data, and 3 different random weight initializations each were used for a total of 24 
distinct runs for each network configuration. For the other set, since there was less 
test data, 10 different splits of the data with 10 different weight initializations each 
were used for a total of 100 distinct runs for each network configuration. The results 
are shown in Table 1. In all cases, the sensitivity and specificity were approximately 
equal. Standard deviations of the averages shown were typically 4.0% for the 24 
run values and 3.0% for the 100 run values. 

The overall data set is linearly separable, and networks with no hidden nodes readily 
achieved 100% on training data and better than 91% on test data. Networks with 
2 or 3 hidden nodes were unable to converge on the training data much of the time , 
but with 4 hidden nodes convergence was restored and accuracy on test data was 
improved over the linear case. This accuracy increased up to 6 or 7 hidden nodes, 
and then began a gradual decrease as still more hidden nodes were added. This 
may be related to overfitting of the training data with the extra degrees of free­
dom, leading to poorer generalization. Adding a second hidden layer also decreased 
generalization accuracy. 

Many other experiments were performed, using as inputs respectively: the 2-D FFT 
of the images, the power spectrum, features extracted with a ring-wedge detector 
in frequency space, the image data combined with each of the above, and multiple 
slight translations of the training and/or test data. None of these yielded an im­
provement in accuracy over the above, and no approach to date with significantly 
fewer than 1024 inputs maintained the high accuracies above. We are continuing 
experiments on other forms of reducing the dimensionality of the input data. A few 
experiments have been run with much larger networks , maintaining the full 128x128 
resolution and 256 gray levels, but this also yields no improvement in the results . 
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4 DISCUSSION 

The networks' performance at the 50% training level was comparable to that of 
humans with no training in radiology, who, supplied with the correct diagnosis 
for half of the images, averaged 92.5% accuracy on the remaining half. When the 
networks were trained on a larger set of data, their accuracy improved, to as high 
as 97.0% when 80% of the data was used for training. We expect this performance 
to continue to improve as larger data sets are collected. 

It is difficult to compare the networks' performance to trained radiologists, who 
can diagnose AVN with essentially 100% accuracy, but who look at multiple cross­
sectional images of far higher quality than our low-resolution, 16 gray-level data 
set. When presented with single images from our data set, they typically make no 
mistakes but set aside a few images as uncertain and strongly resist being forced 
to commit to an answer on those. We are currently experimenting with networks 
which can take inputs from multiple slices and which have an additional output 
representing uncertainty. 

We consider the 97% accuracy achieved here to be very encouraging for further 
work on this problem and for the use of neural networks in more complex problems 
in diagnostic radiology. This is perhaps a very natural field of application for neural 
networks, since radiology resident training is essentially a four year experience with 
a very large training set, and the American College of Radiology teaching file is a 
classic example of a large collection of input/output training pairs (Boone et aI., 
1990). More complex diagnostic radiology problems may of course require fusing 
information from multiple images or imaging modalities, clinical data, and medical 
knowledge (perhaps as expert system rules). An especially intriguing possibility is 
that sophisticated network based systems could someday be presented with images 
which cannot currently be interpreted, supplied with the correct diagnosis as de­
termined by other means, and learn to detect subtle distinctions in the images that 
are not apparent to human radiologists. 
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