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Abstract 

A CCD-based processor that we call the NNC2 is presented. The NNC2 
implements a fully connected 192-input, 32-output two-layer network and 
can be cascaded to form multilayer networks or used in parallel for ad­
ditional input or output nodes. The device computes 1.92 x 109 connec­
tions/sec when clocked at 10 MHz. Network weights can be specified to six 
bits of accuracy and are stored on-chip in programmable digital memories. 
A neural network pattern recognition system using NNC2 and CCD im­
age feature extractor (IFE) devices is described. Additionally, we report 
a CCD output circuit that exploits inherent nonlinearities in the charge 
injection process to realize an adjustable-threshold sigmoid in a chip area 
of 40 x 80 J.tlU2 . 

1 INTRODUCTION 

A neural network chip based on charge-coupled device (CCD) technology, the NNC2, 
is presented. The NNC2 implements a fully connected two-layer net and can be cas­
caded to form multilayer networks. An image feature extractor (IFE) device (Chiang 
and Chuang, 1991) is briefly l·eviewed. The IFE is suited for neural networks with 
local connections and shared weights and can also be used for image preprocessing 
tasks. A neural network pattern recognition system based on feature extraction 
using IFEs and classification using NNC2s is proposed. The efficacy of neural net­
works with local connections and shared weights for feature extraction in character 

741 



742 Chiang, Chuang, and LaFranchise 

recognition and phoneme recognition t.asks has been demonstrated by researchers 
such as (LeCun et. al. 1989) and (Waibel d. aI., 1989), respectively. :rvlore complex 
recognition tasks are likely to prove amenable to a system using locally connected 
networks as a front end with outputs generated by a highly-connected classifier. 
Both the IFE and the NNC2 are hybrids composed of analog and digital compo­
nents. Network weights are stored digitally while neuron states and computation 
results are represented in analog form. Data enter and leave the devices in digital 
form for ease of integration into digital systems. 

The sigmoid is used in many network models as the nonlinear neuron output func­
tion. We have designed, fabricated and tested a compact CCD sigmoidal output 
circuit that is described below. The paper concludes with a discussion of strategies 
for implementing networks with particularly high or low fan-in to fan-out ratios. 

2 THE NNC2 AND IFE DEVICES 

The NNC2 is a neural network processor that implements a fully connected two­
layer net with 192 input nodes and 32 output nodes. The device is an expanded 
version of a previous neural network classifier (NNC) chip (Chiang, 1990) hence the 
appellation "NNC2." The NNC2 consists of a 192-stage CCD tapped delay line for 
holding and shifting input values, 192 four-quadrant multipliers, and 192 32-word 
local memories for weight storage. vVhen clocked at 10 l\iIHz, the NNC2 performs 
1.92 x 109 connections/sec. The device was fabricated using a 2-J,lm minimum feature 
size double-metal, double-polysilicon CCD/CMOS process. The NNC2 measures 
8.8 x 9.2 mm2 and is depicted in Figure 1. 
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Figure 1: Photomicrograph of the NNC2 
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Tests indicate that the NNC2 has an output dynamic range exceeding 42 dB. 
Figure 2 shows the output of the NNC2 when the input consists of the cosine 
waveforms In = 0.2cos(27r2n/192) + 0.4cos(27r3n/192) and the weights are set to 
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cos(2?Tnk/192), k = ±1, ±2, ... , ±16. Due to the orthogonality of sinusoids of differ­
ent frequencies, the output correlations 91e = 2:~~o fncos(2?Tnk/192) should yield 
scaled impulses with amplitudes of ±0.2 and ±0.4 for k = ±2 and ±3 only; this is in­
deed the case as the output (lower trace) in Figure 2 shows. This test demonstrates 
the linearity of the weighted sum (inner product) computed by the NNC2. 

Figure 2: Response of the NNC2 to input cosine waveforms 

Locally connected, shared weight networks can be implemented using the IFE which 
raster scans up to 20 sets of 7x 7 weights over an input image. At every window 
position the inner product of the windowed pixels and each of the 20 sets of weights 
is computed. For additonal details, see (Chiang and Chuang, 1991). The IFE and 
the NNC2 share a number of common features that are described below. 

2.1 MDACS 

The multiplications of the inner product are performed in parallel by multiplying­
D/ A-converters (MDACs), of which there are 192 in the NNC2 and 49 in the IFE. 
Each MDAC produces a charge paclcet proportional to the product of an input and 
a digital weight. The partial products are summed on an output line common to 
all the MDACs, yielding a complete inner product every clock cycle. The design 
and operation of an MDAC are described in detail in (Chiang, 1990). Using a 2-J.lm 
design rule, a four-quadrant MDAC with 8-bit weights occupies an area of 200x 200 
J.lm2 . 

2.2 WEIGHT STORAGE 

The NNC2 and IFE feature on-chip digital storage of programmable network 
weights, specified to 6 and 8 bits, respectively. The NNC2 contains 192 local mem­
ories of 32 words each, while the IFE has forty-nine 20-word memories. Individual 
words can be addressed by means of a row pointer and a column pointer. Each bit 
of the CCD shift register memories is equipped with a feedback enable switch that 
obviates the need to refresh the volatile CCD storage medium explictly; words are 
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rewritten as they are read for use in computation, so that no cycles need be devoted 
to memory refresh. 

2.3 INPUT BUFFER 

Inputs to the NNC2 are held in a 192-stage CCD analog floating-gate tapped delay 
line. At each stage the floating gate is coupled to the input of the corresponding 
MDAC, permitting inputs to be sensed nondestructively for computation. The 
NNC2 delay line is composed of three 64-stage subsections (see Figure 1). This 
partionning allows the NNC2 to compute either the weighted sum of 192 inputs or 
three 64-point inner products. The latter capability is well-matched to Time-Delay 
Neural Networks (TDNNs) that implement a moving temporal window for phoneme 
recognition (Waibel et. ai., 1989). The IFE contains a similar 775-stage delay line 
that holds six lines of a 128-pixel input image plus an additional seven pixels. Taps 
are placed on the first seven of every 128 stages in the IFE delay line so that the 
1-dimensionalline emulates a 2-dimensional window. 

3 CCD SIGMOIDAL OUTPUT CIRCUIT 

A sigmoidal charge-domain nonlinear detection circuit is shown in Figure 3. The cir­
cuit has a programmable input-threshold controlled by the amplitude of the transfer 
gate voltage, VTG. If the incoming signal charge is below the threshold set by VTG 

no charge is transferred to the output port and the incoming signal is ignored. If the 
input is above threshold, the amount of charge transferred to the output port is the 
difference between the charge input and the threshold level. The circuit design is 
based on the ability to calculate the charge transfer efficiency from an n+ diffusion 
region over a bias gate to a receiving well as a function of device parameters and 
exploits the fact that under certain operating conditions a nonlinear dependence ex­
ists between the input and output charge (Thornber, 1971). The maximum output 
produced can be bounded by the size and gate voltage of the receiving well. The 
predicted and measured responses of the circuit for two different threshold levels 
are shown in the bottom of Figure 3. The circuit has an area of 40 x 80 J1.m2 and 
can be integrated with the NNC2 or IFE chips to perform both the weighted-sum 
and output-nonlinearity computations on a single device. 

4 DESIGN STRATEGIES 

The NNC2 uses a time-multiplexed output (TMO) structure (Figure 4a), where the 
number of multipliers and the number of local memories is equal to the number 
of inputs, N. The depth of each local memory is equal to the number of output 
nodes, M, and the outputs are computed serially as each set of weights is read in 
sequence from the memories. A 256-input, 256-output device with 64k 8-bit weights 
has been designed and can be realized in a chip area of 14x 14 mm2 . This chip is 
reconfigurable so that a single such device can be used to implement multilayer net­
works. If a network with a large (>1000) number of input nodes is required, then 
a time-multiplexed input (TMI) architecture with M multipliers may be more suit­
able (Figure 4b). In contrast to a TMO system that computes the M inner products 
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Figure 3: Schematic, micrograph, and test results of the sigmoid cIrcuit 
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Figure 4: (a) Time-multiplexed output ('1'1\10), (b) Time-multiplexed input (TMI) 
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sequentially (the multiplications of each inner product are performed in parallel), 
a TMI structure performs N sets of At multiplications each (all M inner products 
are serially computed in parallel). As each input element arrives it is broadcast to 
all At multipliers. Each multiplier multiplies the input by an appropriate weight 
from its N -word deep local memory and places the result in an accumulator. The 
M inner products appear in the accumulators one cycle after receipt of the final , 
Nth input. 

5 SUMMARY 

We have presented the NNC2, a CCD chip that implements a fully connected two­
layer network at the rate of 1.92 x 109 connections/second. The NNC2 may be used 
in concert with IFE devices to form a CCD-based neural network pattern recogniton 
system or as a co-processor to speed up neural network simulations on conventional 
computers. A VME-bus board for the NNC2 is presently being constructed. A 
compact CCD circuit that generates a sigmoidal output function was described, 
and finally, the relative merits of time-multiplexing input or output nodes in neural 
network devices were enumerated. Table 1 below is a comparison of recent neural 
network chips. 

MIT LINCOLN LAB CIT INTEL MITSUBISHI AT&T HITACHI 
NNC2 NN ETANN NN NN WSINN 

No. OF OUTPUT NODES 32 256 TWO 64 168 16 (or 256) 576 

No. OF INPUT NODES 192 256 TWO 64 168 256 (or 16) 64 

SYNAPSE ACCURACY 6b ' ANALOG 1 b ' ANALOG 
ANALOG · 

ANALOG 
ANALOG· 

ANALOG 
3b ' 6b 8b • 9 b 

PROGRAMMABLE 
6k 64k 10 k 28 k 4k 37k 

SYNAPSES 

THROUGHPUT RATE 
1.92 0.5 2 ? 

(109 Connections/s) 5.1 1.2 

CHIP AREA (mm2) 8.8 · 9.2 , 11.2 ' 7.5 14.5' 14.5 4.5 ' 7 125 · 125 

CLOCK RATE 10MHz 1.5MHz 400 kHz ? 20 MHz 2.1 MHza 

WEIGHT STORAGE DIGITALb ANALOG ANALOG ANALOG ANALOG DIGITAL 

ON CHIP LEARNING NO NO NO YESc NO NO 

DESIGN RULE 211m 211m 111m 111m 0.9 11m 0.8 11m 
CCD/CMOS CCD CMOS CMOS CMOS CMOS 

REPORTED AT: NIPS 91 IJCNN 90 IJCNN89 ISSCC91 ISSCC 91 IJCNN90 

NOTE: 
a - CLOCK RATE FOR WSINN IS EXTRAPOLATED BASED ON 1/STEP TIME. 
b - NO DEGRADATION OBSERVED ON DIGITALLY STORED AND REFRESHED WEIGHTS. 
c - A SIMPLIFIED BOLTZMANN MACHINE LEARNING ALGORITHM IS USED. 

Table 1: Selected neural network chips 
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