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Abstract 

We investigate a model in which excitatory neurons have dynamical thresh­
olds which display both fatigue and potentiation. The fatigue property 
leads to oscillatory behavior. It is responsible for the ability of the model 
to perform segmentation, i.e., decompose a mixed input into staggered 
oscillations of the activities of the cell-assemblies (memories) affected by 
it. Potentiation is responsible for sustaining these staggered oscillations 
after the input is turned off, i.e. the system serves as a model for short 
term memory. It has a limited STM capacity, reminiscent of the magical 
number 7 ± 2. 

1 Introduction 

The limited capacity (7 ± 2) of the short term memory (STM) has been a subject 
of major interest in the psychological and physiological literature. It seems quite 
natural to assume that the limited capacity is due to the special dynamical nature 
of STM. Recently, Crick and Koch (1990) suggested that the working memory 
is functionally related to the binding process, and is obtained via synchronized 
oscillations of neural populations. The capacity limitation of STM may then result 
from the competition between oscillations representing items in STM. In the model 
which we investigate this is indeed the case. 
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Models of oscillating neural networks can perform various tasks: 

1. Phase-locking and synchronization in response to global coherence in the stim­
uli, such as similarity of orientation and continuity (Kamen et al. 1989; Som­
polinsyet al. 1990; Konig & Schillen 1991). 

2. Segmentation of incoherent stimuli in low level vision via desynchronization, 
using oscillator networks with delayed connections (Schillen & Konig 1991). 

3. Segmentation according to semantic content, i.e., separate an input of mixed in­
formation into its components which are known memories of the system (Wang 
et al. 1990, Horn and Usher 1991). In these models the memories are repre­
sented by competing cell a.'3semblies. The input, which affects a subset of these 
assemblies, induces staggered oscillations of their activities. This works as long 
as the number of memories in the input is small, of the order of 5. 

4. Binding, i.e., connecting correctly different attributes of the same object which 
appear in the mixed input (Horn et al. 1991). Binding can be interpreted as 
matching the phases of oscillations representing attributes of the same object 
in two different networks which are coupled in a way which does not assume 
any relation between the attributes. 

To these we add here the important task of 

5. STM, i.e., keeping information about segmentation or binding after the input 
is turned off. 

In order to qualify as models for STM, the staggered oscillations have to prevail 
after the input stimuli disappear. Unfortunately, this does not hold for the models 
quot.ed above. Once the input disappears, either the network's activity dies out, 
or oscillations of assemblies not included in the original input are turned on. In 
other words, the oscillations have no inertia, and thus they do not persist after the 
disappearance of the sensory input. Our purpose is to present a model of com­
peting neural assemblies which, upon receiving a mixed input develops oscillations 
which prevail after the st.imulus disappears. In order to achieve this, the biological 
mechanism of post tetanic potentiation will be used. 

2 Dynaillics of Short Ternl Potentiation 

It was shown that following a t.etanus of electrophysiological stimulation temporary 
modifications in the synaptic strengths, mostly non Hebbian, are observed (Crick 
and Koch, 1990; Zucker, 1989). The time scale of these synaptic modifications 
ranges between 50 111S to several minutes. A detailed description of the processes 
responsible for this mechanism was given by Zucker (1989), exhibiting a rather com­
plex behavior. In the following we will use a simplified version of these mechanisms 
involving two processes with different time scales. We assume that following a pro­
longed activation of a synapse, the synaptic strength exhibits depression on a short 
time scale, but recovers and becomes slightly enhanced on a longer time scale. As 
illustrated in Fig 1 of Zucker (1989), this captures most of the dynamics of Short 
Term Potentiation. The fact that these mechanisms are non Hebbian implies that 
all synapses associated with a presynaptic cell are affected, and thus the unit of 
change is the presynaptic cell (Crick & Koch 1990). 
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Our previous oscillatory neural networks were based on the assumption that, in 
addition to the customary properties of the formal neuron, its threshold increases 
when the neuron keeps firing, thus exhibiting adaptation or fatigue (Horn & Usher 
1989). Motivated by the STP findings we add a new component offacilitaion, which 
takes place on a longer time scale than fatigue. We denote the dynamical threshold 
by the continuous variable r which is chosen as a sum of two components, I and p, 
representing fatigue and potentiation, 

r = all - a2p· 

Their dynamics is governed by the equations 

,dl/dt = m + (l/CI - 1)1 ,dp/dt = m + (1/c2 - l)p 

(1) 

(2) 

where m describes the average neuron activity (firing rate) on a time scale which 
is large compared to the refractory period. The time constants of the fatigue and 
potentiation components, Tj = c,c:' l are chosen so that TI < T2. As a result the 
neuron displays fatigue on a short time scale, but recovers and becomes slightly 
enhanced (potentiated) on a longer time scale. This is clearly seen in Fig. 1, which 
shows the behavior when the activity m of the corresponding neuron is clamped at 
1 for some time (due to sensory input) and quenched to zero afterwards. 
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Figure 1: Behavior of the dynamic threshold r and its fatigue I and potentiation 
p components, when the neuron activity m is clamped as shown. Time scale is 
arbitrary. The parameters are CI = 1.2 C2 = 1.05 al = 4 a2 = 1 . 

We observe here that the threshold increases during the cell's activation, being 
driven to its asymptotic value al c1-I. After the release of the stimulus the dy-

Cl 

namic threshold decreases (i.e . the neuron recovers) and turns negative (signifying 
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potentiation). The parameters were chosen so that asymptotically the threshold 
reaches zero, i.e. no permanent effect is left. In our model we will assume a similar 
behavior for the excitatory cell-assemblies which carry the memories in our system. 

3 The Model 

Our basic model (Horn & Usher 1990) is composed of two kinds of neurons which 
are assumed to have excitatory and inhibitory synapses exclusively. Memory pat­
terns are carried by excitatory neurons only. Furthermore, we make the simplifying 
assumption that the patterns do not overlap with one another, i.e. the model is 
composed of disjoint Hebbian cell-assemblies of excitatory neurons which affect one 
another through their interaction with a single assembly of inhibitory neurons. 

Let us denote by mS'(t) the fraction of cell-assembly number Il which fires at time t, 
and by m I (t) the fraction of active inhibitory neurons. We will refer to mS' as the 
activity of the Ilth memory pattern. There are P different memories in the model, 
and their activities obey the following differential equations 

dmS' /dt = -mS' + FT(AmS' - BmI - f}S' + is') (3) 

dmI/dt == -mI + FT(CM - DmI - f}I) 
where 

M= LmS' (4) 
S' 

f}S' and f}I are the thresholds of all excitatory and inhibitory neurons correspondingly 
and is' represents the input into cell assembly Il. The four parameters ABC and 
D are all positive and represent the different couplings between the neurons. This 
system is an attractor neural network. In the absence of input and dynamical 
thresholds it is a dissipative system which flows into fixed points determined by the 
memOrIes. 

This system is a generalization of the E-I model of Wilson and Cowan (1972) in 
which we have introduced competing memory patterns. The latter make it into an 
attractor neural network. Wilson and Cowan have shown that a pair of excitatory 
and inhibitory assemblies, when properly connected, will form an oscillator. We 
induce oscillations in a different way, keeping the option of having the network 
behave either as an attractor neural network or as an oscillating one: we turn the 
thresholds of the excitatory neurons into dynamic variables, which are defined by 

f}S' = f}t; + brS' . 

The dynamics of the new variables rS' are chosen to follow equations (1) and (2) 
where all elements, r f p and m refer to the same cell-assembly 1-'. To understand 
the effects of this change let us first limit ourselves to the fatigue component only, 
i.e. a1 = 1 and a2 = 0 in Eq. 1. Imagine a situation in which the system would flow 
into a fixed point mS' = 1. rS' will then increase until it reaches the value cI/( C1 -1). 
This means that the argument of the FT function in the equation for mS' decreases 
by 9 = bCI/(Cl - 1) . If this overcomes the effect of the other terms the amplitude 
mS' decreases and the system moves out of the attractor and falls into the basin 
of a different center of attraction. This process can continue indefinitely creating 
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an oscillatory network which moves from one memory to another. Envisage now 
turning on a p/lo component leading to an r/lo behavior of the type depicted in Fig. 
1. Its effect will evidently be the same as the input i/lo in Eq. (3) during the time 
in which it is active. In other words, it will help to reactivate the cell-assembly /-l, 
thus carrying the information that this memory was active before. Therefore, its 
role in our system is to serve as the inertia component necessary for creating the 
effect of STM. 

4 Seglnentation and Short Term Memory 

In this section we will present. results of numerical investigations of our model. The 
parameters used in the following are A = C = D = 1 B = 1.10t; = 0.075 OJ = 
-0.55 T = 0.05 b = 0.2 I = 2.5 and the values of ai and Ci of Fig. 1. We let n of the 
P memories have a constant input of the form 

i/lo = i /-l = 1" .. , n i/lo = 0 /-l = n + 1,·,·, P. (5) 

An example of the result. of a system with P = 10 and n = 4 is shown in Fig. 2. 
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Figure 2: Result.s of our model for P = 10 memories and n = 4 inputs. The first 
frame displays the activities m of the four relevant cell-assemblies, and the second 
frame represents their l' values. The arrow indicates the duration of the mixed 
input. 
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Here we display the activities of the cell-assemblies that receive the constant input 
and their corresponding average thresholds. While the signal of the mixed input 
is on (denoted by an arrow along the time scale) we see how the phenomenon of 
segmentation develops. The same staggered oscillation of the four cell-assemblies 
which received an input is sustained after the signal is turned off. This indicates that 
the system functions as a STM. Note that no synaptic connections were changed 
and, once the system will receive a new input its behavior will be revised. However, 
as long as it is left alone, it will continue to activate the cell-assemblies affected by 
the original input. 

We were able to obtain good results only for low n values, n ::; 4. As n is increased 
we have difficulties wit.h both segmentation and STM. By modifying slightly the 
paradigm we were able to feed 5 different inputs in a STM, as shown in Fig. 3. 
This required presenting them at different times, as indicated by the 5 arrows on this 
figure. In other words, t.his system does not perform segmentation but it continues 
to work as a STM. Note, however, that the order of the different activities is no 
longer maintained after the stimuli are turned off. 
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Figure 3: Result.s for 5 inputs which are fed in consecutively at the times indicated 
by the short arrows. The model functions as STM without segmentation. 
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5 Discussion. 

Psychological experiments show that subjects can repeat a sequence of verbal items 
in perfect order a.'l long as their number is small (7 ± 2). The items may be numbers 
or let.ters but can also be combinations of the latter such as words or recognizable 
dates or acronyms. This proves that STM makes use of the encoded material in the 
long term memory (Miller 1956). This relation between the two different kinds of 
memOt'y lies in the basis of our model. Long term memory is represented by excita­
tory cell assemblies . Incorporating threshold fatigue into the model, it acquires the 
capability of performing temporal segmentation of external input. Adding to the 
threshold post tetanic potentiation, the model becomes capable of maintaining the 
segmented information in the form of staggered oscillations. This is the property 
which we view as responsible for STM. 

Both segmentation and STM have very limited capacities. This seems to follow 
from t.he oscillatory nature of the system which we use to model these functions. 
In contrast with long term memory, whose capacity can be increased endlessly by 
adding neurons and synaptic connections, we find here that only a few items can 
be st.ored in t.he dynamic fashion of staggered oscillations, irrespective of the size 
of the system. Vve regard this result as very significant, in view of the fact that 
the same holds for the limited psychological ability of attention and STM. It may 
indicate t.hat the oscillatory model contains the key to the understanding of these 
psychological findings. 

In order to validate the hypothesis that STM is based on oscillatory correlations 
between firing rates of neurons, some more experimental neurobiological and psy­
chophysical research is required. While no conclusive results were yet obtained from 
recordings of t.he cortical activity in the monkey, some positive support has been ob­
tained in psychophysical experiments. Preliminary results show that an oscillatory 
component can be found in the percentage of correct responses in STM matching 
experiments (Usher & Sagi 1991). 

Our mathematical model is based on many specific assumptions. We believe that 
our main results are characteristic of a class of such models which can be obtained 
by changing various elements in our system. The main point is that dynamical 
storage of information can be achieved through staggered oscillations of memory 
activit.ies. Moreover, to sustain them in the absence of an external input, a poten­
tiation capability ha.'l to be present. A model which contains both should be able 
to accomodate STM in t.he fashion which we have demonstrated. 
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