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Abstract 

One method proposed for improving the generalization capability of a feed­
forward network trained with the backpropagation algorithm is to use 
artificial training vectors which are obtained by adding noise to the orig­
inal training vectors. We discuss the connection of such backpropagation 
training with noise to kernel density and kernel regression estimation. We 
compare by simulated examples (1) backpropagation, (2) backpropagation 
with noise, and (3) kernel regression in mapping estimation and pattern 
classification contexts. 

1 INTRODUCTION 

Let X and Y be random vectors taking values in R d and RP, respectively. Suppose 
that we want to estimate Y in terms of X using a feedforward network whose 
input-output mapping we denote by y = g(x, w). Here the vector w includes all the 
weights and biases of the network. Backpropagation training using the quadratic 
loss (or error) function can be interpreted as an attempt to minimize the expected 
loss 

'\(w) = ElIg(X, w) _ Y1I2. (1) 
Suppose that EIIYW < 00. Then the regression function 

m(x) = E[YIX = x]. (2) 

minimizes the loss Ellb(X) - YI1 2 over all Borel measurable mappings b. Therefore, 
backpropagation training can also be viewed as an attempt to estimate m with the 
network g. 
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In practice, one cannot minimize -' directly because one does not know enough 
about the distribution of (X, Y). Instead one minimizes a sample estimate 

(3) 

in the hope that weight vectors w that are near optimal for ~n are also near optimal 
for -'. In fact, under rather mild conditions the minimizer of ~n actually converges 
towards the minimizing set of weights for -' as n -+ 00, with probability one (White, 
1989). However, if n is small compared to the dimension of w, minimization of ~n 
can easily lead to overfitting and poor generalization, i.e., weights that render ~n 
small may produce a large expected error -'. 

Many cures for overfitting have been suggested. One can divide the available sam­
ples into a training set and a validation set, perform iterative minimization using 
the training set and stop minimization when network performance over the valida­
tion set begins to deteriorate (Holmstrom et al., 1990, Weigend et al., 1990). In 
another approach, the minimization objective function is modified to include a term 
which tries to discourage the network from becoming too complex (Weigend et al., 
1990). Network pruning (see, e.g., Sietsma and Dow, 1991) has similar motivation. 
Here we consider the approach of generating artificial training vectors by adding 
noise to the original samples. We have recently analyzed such an approach and 
proved its asymptotic consistency under certain technical conditions (Holmstrom 
and Koistinen, 1990). 

2 ADDITIVE NOISE AND KERNEL REGRESSION 

Suppose that we have n original training vectors (Xi, Yi) and want to generate 
artificial training vectors using additive noise. If the distributions of both X and Y 
are continuous it is natural to add noise to both X and Y components of the sample. 
However, if the distribution of X is continuous and that of Y is discrete (e.g., in 
pattern classification), it feels more natural to add noiRe to the X components only. 
In Figure 1 we present sampling procedures for both ca~es. In the x-only case the 
additive noise is generated from a random vector Sx with density Kx whereas in the 
x-and-y case the noise is generated from a random vector SXy with density Kxy. 
Notice that we control the magnitude of noise with a scalar smoothing parameter 
h > O. 

In both cases the sampling procedures can be thought of as generating random 
samples from new random vectors Xkn) and y~n) . Using the same argument as 
in the Introduction we see that a network trained with the artificial samples tends 
to approximate the regression function E[y~n) IXkn)]. Generate I uniformly on 
{1, ... , n} and denote by I and I( .11 = i) the density and conditional density of 
Xkn ). Then in the x-only case we get 

n 

m~n)(Xkn)) := E[y~n)IXkn)] = LYiP(I = iIXkn)) 
i=l 
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Procedure 1. 
(Add noise to x only) 

1. Select i E {I, ... , n} with equal 
probability for each index. 

2. Draw a sample Sx from density 
I<x on Rd. 

3. Set x~n) Xi + hsx 
(n) 

Yh Yi· 

Procedure 2. 
(Add noise to both x and y) 

1. Select i E {I, ... , n} with equal 
probability for each index. 

2. Draw a sample (sx, Sy) from 
density /{Xy on Rd+p. 

3. Set x~n) Xi + hsx 
(n) h Yh Yi + Sy. 

Figure 1: Two Procedures for Generating Artificial Training Vectors. 

n f(X~n)II = i)P(I = i) n h-d/{x«Xkn) - xi)/h). n- 1 

= tt Yi f(Xhn )) = tt Yi 2:7=1 n- 1h- d/{x«Xkn) - xi)/h)· 

Denoting /{x by k we obtain 

(n)( ) _ 2:~=1 k«x - xi)/h)Yi 
m h X - ",0 . 

L..,j=1 k«x - xi)/h) 
(4) 

We result in the same expression also in the x-and-y case provided that 
fY/{Xy(x,y)dy = 0 and that we take k(x) = fI<Xy(x,y)dy (Watson, 1964). 
The expression (4) is known as the (N adaraya-Watson) kernel regression estimator 
(Nadaraya, 1964, Watson, 1964, Devroye and Wagner, 1980). 

A common way to train a p-class neural network classifier is to train the network 
to associate a vector x from class j with the j'th unit vector (0, ... ,0,1,0, ... ,0). 
It is easy to see that then the kernel regression estimator components estimate the 
class a posteriori probabilities using (Parzen-Rosenblatt) kernel density estimators 
for the class conditional densities. Specht (1990) argues that such a classifier can 
be considered a neural network. Analogously, a kernel regression estimator can be 
considered a neural network though such a network would need units proportional 
to the number of training samples. Recently Specht (1991) has advocated using 
kernel regression and has also presented a clustering variant requiring only a fixed 
amount of units. Notice also the resemblance of kernel regression to certain radial 
basis function schemes (Moody and Darken, 1989, Stokbro et al., 1990). 

An often used method for choosing h is to minimize the cross-validated error (HardIe 
and Marron, 1985, Friedman and Silverman, 1989) 

(5) 

Another possibility is to use a method suggested by kernel density estimation theory 
(Duin, 1976, Habbema et al., 1974) whereby one chooses that h maximizing a cross­
validated (pseudo) likelihood function 

o o 

Lxy (h) = II f:,L(Xi, yd, Lx(h) = IT f:'h,i(Xi), (6) 
i=1 i=1 
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where I;r i (I; h i) is a kernel density estimate with kernel Kxy (Kx) and smooth­
ing para~~ter h hut with the i'th sample point left out. 

3 EXPERIMENTS 

In the first experiment we try to estimate a mapping go from noisy data (x, y), 

Y go(X)+Ny =asinX+b+Ny, a=0.4,b=0.5 

X '" UNI( -71",71"), Ny '" N(O, (72), (7 = O.l. 

Here UNI and N denote the uniform and the normal distribution. We experi­
mented with backpropagation, backpropagation with noise and kernel regression. 
Backpropagation loss function was minimized using Marquardt's method. The net­
work architecture was FN-1-13-1 with 40 adaptable weights (a feedforward network 
with one input, 13 hidden nodes, one output, and logistic activation functions in 
the hidden and output layers). We started the local optimizations from 3 different 
random initial weights and kept the weights giving the least value for ~n. Backprop­
agation training with noise was similar except that instead of the original n vectors 
we used IOn artificial vectors generated with Procedure 2 using SXy '" N(O, 12). 

Magnitude of noise was chosen with the criterion Lxy (which, for backpropagation, 
gave better results than M). In the kernel regression experiments SXy was kept the 
same. Table 1 characterizes the distribution of J, the expected squared distance of 
the estimator 9 (g(., w) or m~n) from go, 

J = E[g(X) - gO(X)]2. 
Table 2 characterizes the distribution of h chosen according to the criteria Lxy and 
M and Figure 2 shows the estimators in one instance. Notice that, on the average, 
kernel regression is better than backpropagation with noise which is better than 
plain backpropagation. The success of backpropagation with noise is partly due to 
the fact that (7 and n have here been picked favorably. Notice too that in kernel 
regression the results with the two cross-validation methods are similar although 
the h values they suggest are clearly different . 

In the second experiment we trained classifiers for a four-dimensional two-class 
problem with equal a priori probabilities and class-conditional densities N(J.ll, C1) 

and N(J.l2' C2), 

J.ll = 2.32[1 0 0 O]T, C1 = 14; J.l2 = 0, C2 = 414. 

An FN-4-6-2 with 44 adaptable weights was trained to associate vectors from class 1 
with [0.9 O.l]T and vectors from class 2 with [0.1 0.9jT. We generated n/2 original 
vectors from each class and a total of IOn artificial vectors using Procedure 1 with 
Sx '" N(O, 14). We chose the smoothing parameters, hI and h2' separately for 
the two classes using the criterion Lx: hi was chosen by evaluating Lx on class 
i samples only. We formed separate kernel regression estimators for each class; 
the i'th estimator was trained to output 1 for class i vectors and 0 for the other 
sample vectors. The M criterion then produces equal values for hI and h2. The 
classification rule was to classify x to class i if the output corresponding to the 
i'th class was the maximum output. The error rates are given in Table 3. (The 
error rate of the Bayesian classifier is 0.116 in this task.) Table 4 summarizes the 
distribution of hI and h2 as selected by Lx and M . 
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Table 1: Results for Mapping Estimation. Mean value (left) and standard deviation 
(right) of J based on 100 repetitions are given for each method. 

BP BP+noise, Kernel regression 
n Lxy Lxy M 

40 .0218 .016 .0104 .0079 .00446 .0022 .00365 .0019 
80 .00764 .0048 .00526 .0018 .00250 .00078 .00191 .00077 

Table 2: Values of h Suggested by the Two Cross-validation Methods in the Map­
ping Estimation Experiment. Mean value and standard deviation based on 100 
repetitions are given. 

n Lxy M 
40 0.149 0.020 0.276 0.086 
80 0.114 0.011 0.241 0.062 

Table 3: Error Rates for the Different Classifiers. Mean value and standard devia­
tion based on 25 repetitions are given for each method. 

BP BP+noise, Kernel regression 
n Lx Lx M 
44 .281 .054 .189 .018 .201 .022 .207 .027 
88 .264 .028 .163 .011 .182 .010 .184 .013 
176 .210 .023 .145 .0lD .164 .0089 .164 .011 

Table 4: Values of hl and h2 Suggested by the Two Cross-validation Methods in 
the Classification Experiment. Mean value and standard deviation based on 25 
repetitions are given. 

Lx M 
n hl h2 hl = h2 
44 .818 .078 1.61 .14 1.14 .27 
88 .738 .056 1.48 .11 1.01 .19 
176 .668 .048 1.35 .090 .868 .lD 
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4 CONCLUSIONS 

Additive noise can improve the generalization capability of a feedforward network 
trained with the backpropagation approach. The magnitude of the noise cannot 
be selected blindly, though. Cross-validation-type procedures seem to suit well for 
the selection of noise magnitude. Kernel regression, however, seems to perform well 
whenever backpropagation with noise performs well. If the kernel is fixed in kernel 
regression, we only have to choose the smoothing parameter h, and the method is 
not overly sensitive to its selection. 
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Figure 2: Results From a Mapping Estimation Experiment. Shown are the n = 40 
original vectors (o's), the artificial vectors (dots), the true function asinx + band 
the fitting results using kernel regression, backpropagation and backpropagation 
with noise. Here h = 0.16 was chosen with Lxy. Values of J are 0.0075 (kernel 
regression), 0.014 (backpropagation with noise) and 0.038 (backpropagation) . 


