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ABSTRACT 

We present here an interesting experiment in 'quick modeling' by humans, 
performed independently on small samples, in several languages and two 
continents, over the last three years. Comparisons to decision tree proce­
dures and neural net processing are given. From these, we conjecture that 
human reasoning is better represented by the latter, but substantially dif­
ferent from both. Implications for the 'strong convergence hypothesis' be­
tween neural networks and machine learning are discussed, now expanded 
to include human reasoning comparisons. 

1 INTRODUCTION 

Until recently the fields of symbolic and connectionist learning evolved separately. 
Suddenly in the last two years a significant number of papers comparing the two 
methodologies have appeared. A beginning synthesis of these two fields was forged 
at the NIPS '90 Workshop #5 last year (Pratt and Norton, 1990), where one may 
find a good bibliography of the recent work of Atlas, Dietterich, Omohundro, Sanger, 
Shavlik, Tsoi, Utgoff and others. 

It was at that NIPS '90 Workshop that we learned of these studies, most of which 
concentrate on performance comparisons of decision tree algorithms (such as ID3, 
CART) and neural net algorithms (such as Perceptrons, Backpropagation). Inde­
pendently three years ago we had looked at Quinlan's ID3 scheme (Quinlan, 1984) 
and intuitively and rather instantly not agreeing with the generalization he obtains 
by ID3 from a sample of 8 items generalized to 12 items, we subjected this example 
to a variety of human experiments. We report our findings, as compared to the 
performance of ID3 and also to various neural net computations. 
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Because our focus on humans was substantially different from most of the other 
mentioned studies, we also briefly discuss some important related issues for fur­
ther investigation. More details are given elsewhere (Bernasconi and Gustafson, to 
appear). 

2 THE EXPERIMENT 

To illustrate his ID3 induction algorithm, Quinlan (1984) considers a set C consist­
ing of 8 objects, with attributes height, hair, and eyes. The objects are described 
in terms of their attribute values and classified into two classes, "+" and "-", re­
spectively (see Table 1). The problem is to find a rule which correctly classifies all 
objects in C, and which is in some sense minimal. 

Table 1: The set C of objects in Quinlan's classification example. 

Object Height Hair Eyes Class 

1 (s) short (b) blond (bl) blue + 
2 (t) tall (b) blond (br) brown 
3 (t) tall (r) red (bl) blue + 
4 (s) short (d) dark (bl) blue 
5 (t) tall (d) dark (bl) blue 
6 (t) tall (b) blond (bl) blue + 
7 (t) tall (d) dark (br) brown 
8 (s) short (b) blond (br) brown 

The ID3 algorithm uses an information-theoretic approach to construct a "minimal" 
classification rule, in the form of a decision tree, which correctly classifies all objects 
in the learning set C. In Figure 1, we show two possible decision trees which 
correctly classify all 8 objects of the set C. Decision tree 1 is the one selected by 
the ID3 algorithm. As can be seen, "Hair" as root of the tree classifies four of the 
eight objects immediately. Decision tree 2 requires the same number of tests and 
has the same number of branches, but "Eyes" as root classifies only three objects 
at the first level of the tree. 

Consider now how the decision trees of Figure 1 classify the remaining four possible 
objects in the set complement C'. Table 2 shows that the two decision trees lead to 
a different classification of the four objects of sample C'. We observe that the ID3-
preferred decision tree 1 places a large importance on the "red" attribute (which 
occurs only in one object of sample C), while decision tree 2 puts much less emphasis 
on this particular attribute. 
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Decision tree 1 Decision tree 2 

Figure 1: Two possible decision trees for the classification of sample C (Table 1) 

Table 2: The set C' of the remaining four objects, and their classification by the 
decision trees of Figure 1. 

Object Attribute Classification 
Values Tree 1 Tree 2 

9 s d br 
10 s r bl + + 
11 s r br + 
12 t r br + 

3 GENERALIZATIONS BY HUMANS AND NEURAL 
NETS 

Curious about these differences in the generalization behavior, we have asked some 
humans (colleagues, graduate students, undergraduate students, some nonscientists 
also) to "look" at the original sample C of 8 items, presented to them without 
warning, and to "use" this information to classify the remaining 4 objects. Over 
some time, we have accumulated a "human sample" of total size 73 from 3 continents 
representing 14 languages. The results of this human generalization experiment are 
summarized in Table 3. We observe that about 2/3 of the test persons generalized 
in the same manner as decision tree 2, and that less than 10 percent arrived at the 
generalization corresponding to the ID3-preferred decision tree 1. 
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Table 3: Classification of objects 9 through 12 by Humans and by a Neural Net. 
Based on a total sample of 73 humans. Each of the 4 contributing subsamples from 
different languages and locations gave consistent percentages. 

Object Attribute Classification 
Values A B C D E Other 

9 s d br 

10 s r bl + + + + 
11 s r br + + 
12 t r br + + 

Humans: 65.8% 8.2% 4.1% 9.6% 12.3% 
Neural Net: 71.4% 12.1% 9.4% 4.2% 2.9% 

We also subjected this generalization problem to a variety of neural net computa­
tions. In particular, we analyzed a simple perceptron architecture with seven input 
units representing a unary coding of the attribute values (i.e., a separate input unit 
for each attribute value). The eight objects of sample C (Table 1) were used as 
training examples, and we employed the perceptron learning procedure (Rumelhart 
and McClelland, 1986) for a threshold output unit . In our initial experiment, the 
starting weights were chosen randomly in (-1,1) and the learning parameter h (the 
magnitude of the weight changes) was varied between 0.1 and 1. After training, 
the net was asked to classify the unseen objects 9 to 12 of Table 2. Out of the 16 
possible classifications of this four object test set, only 5 were realized by the neural 
net (labelled A through E in Table 3). The percentage values given in Table 3 
refer to a total of 9000 runs (3000 each for h = 0.1, 0.5, and 1.0, respectively). As 
can be seen, there is a remarkable correspondence between the solution profile of 
the neural net computations and that of the human experiment. 

4 BACKWARD PREDICTION 

There exist many different rules which all correctly classify the given set C of 8 
objects (Table 1), but which lead to a different generalization behavior, i.e., to a 
different classification of the remaining objects 9 to 12 (see Tables 2 and 3). From 
a formal point of view, all of the 16 possible classifications of objects 9 to 12 are 
equally probable, so that no a priori criterion seems to exist to prefer one general­
ization over the other. We have nevertheless attempted to quantify the obviously 
ill-defined notion of "meaningful generalization". To estimate the relative "quality" 
of different classification rules, we propose to analyze the "backward prediction abil­
ity" of the respective generalizations . This is evaluated as follows. An appropriate 
learning method (e.g., neural nets) is used to construct rules which explain a given 
classification of objects 9 to 12, and these rules are applied to classify the initial 
set C of 8 objects. The 16 possible generalizations can then be rated according to 
their "backward prediction accuracy" with respect to the original classification of 
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the sample C. We have performed a number of such calculations and consistently 
found that the 5 generalizations chosen by the neural nets in the forward prediction 
mode (cf. Table 3) have by far the highest backward prediction accuracy (on the 
average between 5 and 6 correct classifications). Their negations ("+" exchanged 
with "-") , on the other hand, predict only about 2 to 3 of the 8 original classifica­
tions correctly, while the remaining 6 possible generalizations all have a backward 
prediction accuracy close to 50% (4 out of 8 correct) . These results, representing 
averages over 1000 runs, are given in Table 4. 

Table 4: Neural Net backward prediction accuracy for the different classifications 
of objects 9 to 12. 

Classification Backward prediction 
of objects accuracy (% ) 

9 10 11 12 

+ 76.0 
+ + 71.2 
+ + + 71.1 
+ + 67.9 

61.9 
+ 52.6 

+ 52.5 
+ + 52.5 
+ + + 47.4 
+ + + 47.3 

+ + 47.0 
+ + + + 37.2 
+ + 31.7 
+ 30.1 
+ + 28.3 
+ + + 23.6 

In addition to Neural Nets, we have also used the ID3 method to evaluate the back­
ward predictive power of different generalizations. This method generates fewer 
rules than the Neural Nets (often only a single one), but the resulting tables of 
backward prediction accuracies all exhibit the same qualitative features . As ex­
amples, we show in Figure 2 the ID3 backward prediction trees for two different 
generalizations, the ID3-preferred generalization which classifies the objects 9 to 12 
as (- + ++), and the Human and Neural Net generalization (- + --). Both trees 
have a backward prediction accuracy of 75% (provided that "blond hair" in tree (a) 
is classified randomly). 
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(a) (b) 

Figure 2: ID3 backward prediction trees, (a) for the ID3-preferred generalization 
(- + ++), and (b) for the generalization preferred by Humans and Neural Nets, 
(- + --) 

The overall backward prediction accuracy is not the only quantity of interest in these 
calculations. We can, for example, examine how well the original classification of an 
individual object in the set C is reproduced by predicting backwards from a given 
generalization. 

Some examples of such backward prediction profiles are shown in Figure 3. From 
both the ID3 and the Neural Net calculations, it is evident that the backward 
prediction behavior of the Human and Neural Net generalization is much more 
informative than that of the ID3-solution, even though the two solutions have almost 
the same average backward prediction accuracy. 

IDJ Backward Prediction: 

Object ,. 

~eural ~et Backward Prediction: 

1:1) 

O.S 

o -0.>......,.,.....,.,.."..>..>.,.;>0..>....>..>....:....,." 

123.l5678 
ObJect" 

Ib) 

Ibl 

Figure 3: Individual backward prediction probabilities for the ID3-preferred gen­
eralization [graphs (a)], and for the Human and Neural Net generalization [graphs 
(b )]. 
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Finally, we have recently performed a Human backward prediction experiment. 
These results are given in Table 5. Details will be given elsewhere (Bernasconi and 
Gustafson, to appear). Note that the Backward Prediction results are commensu­
rate with the Forward Prediction in both cases. 

Table 5: Human backward predictions and accuracy from the two principal forward 
generalizations A (Neural Nets, Humans) and B (ID3). 

Object Class Backward Backward 
from A from B 

1 + + + + 
2 + 
3 + + + + + 
4 + 
5 + 
6 + + + + 
7 
8 + 
Humans: 59% 12% 33% 17% 
Accuracy: 75% 100% 75% 75% 

5 DISCUSSION AND CONCLUSIONS 

Our basic conclusion from this experiment is that the "Strong Convergence Hy­
pothesis" that Machine Learning and Neural Network algorithms are "close" can 
be sharpened, with the two fields then better distinguished, by comparison to Hu­
man Modelling. From the experiment described here, we conjecture a "Stronger 
Convergence Hypothesis" that Humans and Neural Nets are "closer." 

Further conclusions related to minimal network size (re Pavel, Gluck, Henkle, 1989), 
crossvalidation (see Weiss and Kulikowski, 1991), sharing over nodes.(as in Diet­
terich, Hild, Bakiri, to appear, and Atlas et al., 1990), and rule extracting (Shavlik 
et al., to appear), will appear elsewhere (Bernasconi and Gustafson, to appear). Al­
though we have other experiments on other test sets underway, it should be stressed 
that our investigations especially toward Human comparisons are only preliminary 
and should be viewed as a stimulus to further investigations. 
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