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Abstract 

\Ve present. an approach for df'velopment of a decoder for any complex 
binary error-correct.ing code- (ECC) via training from examples of decoded 
received words. Our decoder is a connectionist architecture. We describe 
two sepa.rate solutions: A system-level solution (the Cascaded Networks 
Decoder); and the ECC-Enhanced Decoder, a solution which simplifies 
the mapping problem which must be solved for decoding. Although both 
solutions meet our basic approach constraint for simplicity and compact­
ness. only the ECC-Enhanced Decoder meet.s our second basic constraint 
of being a generic solution. 

1 INTRODUCTION 

1.1 THE DECODING PROBLEM 

An error-correcting code (ECC) is used to identify and correct errors in a received 
binary vector which is possibly corrupted clue to transmission across a noisy channel. 
In order to use a selected error-correcting code. the information bits, or the bits 
containing t.he message. are tllCOdid int.o a valid ECC codeword by the addition of 
a set of f'xtra hits, the redulldallcy, detf'fmined by tlw properties of the selected 
ECC. To decode a received word. there is a pre-processing step first in which a 
syndrome is calculated from the word. The syndrome is a vector whose length is 
equal t.o the redundancy. If the syndrome is the all-zero vector, then the received 
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word is a valid codeword (no errors). The non-zero syndromes have a one-to-one 
relationship wit.h t.he error vectors provided the number of errors does not exceed 
the error-COlTect ing capability of the ('Ode. (An error wctor is a binary vector 
equal in length to an ECC codeword with the error positions having a value of 1 
while the rest of t.1lf' positions have the value 0). The decoding process is defined as 
the mapping of a syndrome to it.s associat.ed error vector. Once an error vector is 
found, the correct,ed codeword can be calculated by XORillg the error vector with 
the received word. For more background in error-correct.ing codes , the reader is 
referred to any book in the field, such as [2, 9] . 

ECC's differ in the number of errors which they can correct and also in the distance 
(measured as a Hamming distance in codespace) which can be recognized between 
tllP received word and a t.rue code\vord . Codes which can correct. more errors and 
cover greater distances are considered more powerful. However, in practice the 
difficulty of developing an efficient. decoder 'which can correct many errors prevents 
the use of most ECC's in the solut.ion of real world problems. Although decoding 
can be done for any ECC via lookup tahle, this method quickly becomes intractable 
as the length of codewords and the numher of errors possibly corrected increase. 
Devdopment of an efficient. decoder for a part.icular ECC is not straightforward. 
Moreover, it was shown that decoding of a random code is an NP-hard problem [1, 4]. 

The purpose of our work is to develop an ECC decoder using the trainable machine 
paradigm; i.e. we develop a decoder via training using examples of decoded received 
words. To prove our collcept, we have selected a binary hlock code, the (23,12,7) 
Golay Code, v.'hich has "real world" complexity. The Golay Code corrects up to 3 
errors and has minimum distance 7. A Golay codeword is 23 bits long (12 infor­
mat.ion hits, 11 bit redundancy); the syndrome is 11 bits long. There exist many 
efficient. decoding methods for the Golay code [2, 3, 9], but t.he code complexity 
represents quite a challenge for our proposed approach. 

1.2 A CONNECTIONIST ECC DECODER 

\Ve use a connect.ionist archit.ecture as our ECC decoder; the input is a syndrome 
(we assume that the straight.forward step of syndrome calculation is pre-processing) 
and the output is the port.ion of t.he error vector conesponding to the information 
bits in the received word (we ignore the redundancy). The primary reason for our 
choice of a connect.ionist. architecturE' is its inherent simplicity and compactness; 
a connectionist. archit.ecture solut.ion is readily implemented in either hardware or 
software solutions to complex real world problems. The particular architecture we 
use is t.he multi-layer feedforward network with one hidclf'n layer. There are full 
connections only between adja.cent layers. The number of nodes in the input layer 
is the number of bit.s in the syndrome, and t.he number of nodes in the output layer 
is the number ofinformat.ion bit.:; in t.he ECC' codeword. Tlw number of nodes in the 
hidden layer is a free parameter, but typically this number is no more than 1 or 2 
nodes great.f'l' t.han the number of nodes in t.he input. layer. Our activation function 
is t.he logistic funct.ion and our t.raining algorit.hm is backpropaga.tion (see [10] for a 
desniption of both) . This architectural approach has been demonst.rated to be both 
cost-effective and a superior performer compared to classical stat.istical alternative 
methods in t.he solut.ion of complex mapping prohlems when it is used as a trainable 
pattern classifier [6, 7]. 
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There are two basic constraints which we have placed on our trainable connectionist 
decoder. First, the final connectionist archit.ect ure must be simple and contain as 
few nodes as possible. Second, the method we u::;e to develop our decoder must be 
able to be generalized to any binary ECC. To meet the second constraint, we insured 
t.hat t.he training uat.aset. cont.ained only examples of decoded words (i.e. no a priori 
knowledge of code patterning or exist.ing decoding algorithms was included), and 
also that the training dataset was a.<; small a subset of t.he possible error vectors as 
was required to obtain generalization by trained net.works . 

2 RESULTS 

2.1 THE CASCADED NETWORKS DECODER 

Using our basic approach, we have developed two separate solutions. One, the 
Cascaded Networks Decoder (see Figure 1) a systf'm-If'vf'l solution which parses 
t.he decoding problem into a set of more t.ractable problems each addressed by a 
separate network. These smaller networks each solve f'ither simple classification 
problems (binary decisions) or are specialized decoders. Performance of the Cas­
ca.ded Net.works Df'coder is 95% correct. for t.he Gola.y code (test.ed on all 211 possible 
error \"ect.ors). and the whole system is small and compact. How~ver, this solution 
does not meet our const.raint. that t.he solution method bf' gf'lleric since the parsing 
of thf' original prohlem does rf'quire t:'ome a priori knowledge about. the ECC, and 
t.he training of each network is dOHt' 011 a separate, self-contained schedule. 

2.2 THE ECC-ENHANCED DECODER 

The approach taken by the Cascaded Networks Decoder simplifies the solution 
strategy of the decoding problem, while the E('('-Enhancpd Decoder simplifies the 
mapping problem to he solved by tlw decoder. In the ECC-Enhanced Decoder, 
both the input syndrome and the out.put f'rJ"or vector art' encoded as codewords 
of an EC(,. Such f'ncoding should serye to sf'parat.e tIlt' inputs in input space and 
the outputs in out.put. space , creating a "region-to-rpgion" mapping which is much 
easier t.han t.he "point-to-point" ma.pping required without. encoding [8]. In addition, 
the decoding of t.he network output. compensates for some level of uncertainty in 
the network's performance; an output vector within a small dista.nce of the target 
vector will be corrected to the actual target by the ECC. This enhances training 
procedures [.5, 8]. 

\Ve have founu that t.he ECC-Enhanced Decoder method meets all of our constraints 
for a connect.ionist architecture. However, we also have found that choosing the best 
ECC for encoding the input. and for encoding the output. represent.s two critical and 
quite separate problems which must he soh·ed in order for the method to succeed. 

2.2.1 Choosing the Input ECC Encoding 

The goal for the chosen ECC int.o which t.he input is encoded is to achieve maximum 
sepal'ation of input patterns in code spacE'. The major constraint is the size of the 
codeword (number of bits which thf' lengt.h of the redundancy must be), because 
longer codewords increase the complexit.y of training and the size (in number of 
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Figure 1: Cascaded Networks Decoder. A system-level solution incorporating 5 
casca.ded lleural networks. 

nodes) of the connectionist architecturf'. To det.ermine the effect of different types 
of ECC's on the separation of input patterns in code space, we constructed a 325 
pattern training dataset (mapping 11 bit. syndrome to 12 bit error vector) and 
encoded only the inputs using 4 different ECC's. The candidate ECC's (with the 
size of redundancy required to encode t.he 11 bit syndrome) were 

• Hamming (bit level, 4 bit. redundancy) 

• Extended Ha.mming (bit. level, !) bit rpclundancy) 

• Reed Solomon (4 bit byt.f' level. 2 byt~ ff"!dundancy) 

• Fire (bit level, 11 bit redundancy) 

\Ve t.rained 5 networks (1 with no encoding of input. 1 each with a different ECC 
encoding) using this training elataset. Empirically, we had determined that this 
training dataset. is slightly t.oo small to achieve generalization for this task; we 
trained each net\"wrk until its performance level on a 435 pattern test dataset (dif­
ferellt patterns from the training dataset but. encoded identically) degraded 20%. 
\Ve then analyzed the effect of the input encoding on the patterning of error posi­
tions we observed for the output. vectors. 
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The ff'suHs of our analysis iUp illustrat.t'd in Figures 2 and 3. These bar graphs 
look only at. out.put vect.ors found t.o haH' 2 or more errors, a.nd show the proximity 
of error positions within an output vector. Each bar corre:sponds to the maximum 
distancp of error positions within a vector (adjacent posit ions have a distance of 
1). The bar height. represent.s t.he total frf'quency of vect.ors with a given maximum 
distance; each bar is color-coded to break down t.he frequt' llcy by total number of 
errors per vect.or. This type of measurt'ment. shows the degree of burst (clustering of 
error posit.ions) in t he errors; knowing \'\·het.her or not one has burst errors influences 
t.he likf'lihood of correct.ion of those errors by an ECC (for instance, Fire codes are 
burst correcting codes). 
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FigUl'e 2: Bar Gl'aphs of Out.put Errors Made hy tllf' Decoder. There was no 
encoding of t.he illPut in this instance. Training datasd results are on left, test 
dataset. rf'Sult.s are on right. 

Our aualy:sis shows t.hat. t.he Reed Solomon ECC is t.he only input encoding which 
separat.ed t.he input pat.terns in a way which mack liSe of an output pa.ttern ECC 
encoding effect.ive (result.ed ill more burst-type errors, decreased the total number of 
error positions in output wctors which had errors). The J 1 bit redundancy required 
by the Fire code for input encoding increased complexity so that this solution was 
worse t.han t.llf' others in terms of performance. Thus, \V(' have chosen the Reed 
Solomon ECC for input. encoding in our ECC-Enhanced Decoder. 

2.2.2 Choosing the Output ECC Encoding 

Tllf' goal for t.ht' chosell ECC into which t.he out.put is encoded is correction of 
the maximum I1llml)f'r of errors made by the decoder. Like t.he constraint imposed 
on the chosen ECC for input encoding, the ECC select.ell for encoding the output 
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Figur{~ 3: Bar C.;raphs of Effects of Different ECC Input Encodings on Output Errors 
Made by the Decoder. Training dataset results are 011 left, test dataset results are on 
right. Top row is Hamming cod(=' encoding. bottom row is Reed Solomon encoding. 

should add as small a redundancy as possible. However, thne is another even more 
import.ant constraint on t.he choice of ECC for output. encoding: decoding simplicity. 
The major advant.age gained from encoding t.he out.put is the correction of slight 
uncert.ainty in the performance of the decoder, and t.his advantage is gained after 
the out.put is decoded. Thus, any ECC selected for output encoding should be one 
which can be decoded efficiently. 

The f'rror separat.ion results we gained from our analysis of the effects of input 
encoding were used t.o guide our choices for an ECC into which the output would 
be encoded . \Ve chose our ECC from the 4 candidat.es we considered for the input 
(these ECC's all can he decoded efficiently). The ff~dundancy cost for encoding a 
12 bit. error vector was t.he same as in t.he 11 bit. input case for t.he Reed Solomon 
and Fire codes, but. was increased by 1 bit. for the Hamming codes. Based on the 
result. t.hat. a Reed Solomon encoding of t.he input both increased the amount of 
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burst errors and decreased the total number of errors per output vector, we chose 
the Hamming cod~ and t.he Fire code for our output encoding ECC. Both encodings 
yielded excellent performance on the Golay code decoding problem; the Fire code 
output encoding result.ed in better generalization by the network and thus better 
performallce (87% correct) t.han the Hamming code output encoding (84% correct). 
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