
Hierarchies of adaptive experts 

Michael I. Jordan Robert A. Jacobs 
Department of Brain and Cognitive Sciences 

Massachusetts Institute of Technology 
Cambridge, MA 02139 

Abstract 

In this paper we present a neural network architecture that discovers a 
recursive decomposition of its input space. Based on a generalization of the 
modular architecture of Jacobs, Jordan, Nowlan, and Hinton (1991), the 
architecture uses competition among networks to recursively split the input 
space into nested regions and to learn separate associative mappings within 
each region. The learning algorithm is shown to perform gradient ascent 
in a log likelihood function that captures the architecture's hierarchical 
structure. 

1 INTRODUCTION 

Neural network learning architectures such as the multilayer perceptron and adap­
tive radial basis function (RBF) networks are a natural nonlinear generalization 
of classical statistical techniques such as linear regression, logistic regression and 
additive modeling. Another class of nonlinear algorithms, exemplified by CART 
(Breiman, Friedman, Olshen, & Stone, 1984) and MARS (Friedman, 1990), gen­
eralizes classical techniques by partitioning the training data into non-overlapping 
regions and fitting separate models in each of the regions. These two classes of algo­
rithms extend linear techniques in essentially independent directions, thus it seems 
worthwhile to investigate algorithms that incorporate aspects of both approaches 
to model estimation. Such algorithms would be related to CART and MARS as 
multilayer neural networks are related to linear statistical techniques. In this pa­
per we present a candidate for such an algorithm. The algorithm that we present 
partitions its training data in the manner of CART or MARS, but it does so in a 
parallel, on-line manner that can be described as the stochastic optimization of an 
appropriate cost functional. 

985 



986 Jordan and Jacobs 

Why is it sensible to partition the training data and to fit separate models within 
each of the partitions? Essentially this approach enhances the flexibility of the 
learner and allows the data to influence the choice between local and global repre­
sentations. For example, if the data suggest a discontinuity in the function being 
approximated, then it may be more sensible to fit separate models on both sides of 
the discontinuity than to adapt a global model across the discontinuity. Similarly, 
if the data suggest a simple functional form in some region, then it may be more 
sensible to fit a global model in that region than to approximate the function locally 
with a large number of local models. Although global algorithms such as backprop­
agation and local algorithms such as adaptive RBF networks have some degree of 
flexibility in the tradeoff that they realize between global and local representation, 
they do not have the flexibility of adaptive partitioning schemes such as CART and 
MARS. 

In a previous paper we presented a modular neural network architecture in which 
a number of "expert networks" compete to learn a set of training data (Jacobs, 
Jordan, Nowlan & Hinton, 1991). As a result of the competition, the architecture 
adaptively splits the input space into regions, and learns separate associative map­
pings within each region. The architecture that we discuss here is a generalization 
of the earlier work and arises from considering what would be an appropriate inter­
nal structure for the expert networks in the competing experts architecture. In our 
earlier work, the expert networks were multilayer perceptrons or radial basis func­
tion networks. If the arguments in support of data partitioning are valid, however, 
then they apply equally well to a region in the input space as they do to the en­
tire input space, and therefore each expert should itself be composed of competing 
sub-experts. Thus we are led to consider recursively-defined hierarchies of adaptive 
experts. 

2 THE ARCHITECTURE 

Figure 1 shows two hierarchical levels of the architecture. (We restrict ourselves to 
two levels throughout the paper to simplify the exposition; the algorithm that we 
develop, however, generalizes readily to trees of arbitrary depth). The architecture 
has a number of expert networks that map from the input vector x to output 
vectors Yij. There are also a number of gating networks that define the hierarchical 
structure of the architecture. There is a gating network for each cluster of expert 
networks and a gating network that serves to combine the outputs of the clusters. 
The output of the ith cluster is given by 

Yi = L gjliYij 

j 

(1) 

where gjli is the activation of the ph output unit of the gating network in the ith 

cluster. The output of the architecture as a whole is given by 

(2) 

where gi is the activation of the ith output unit of the top-level gating network. 



Expert 
Network 

Expert 
Network 

Expert 
Network 

Expert 
Network Y22 

Gating 
Network 

Gating 
Network 

9 1/2 9 2/2 

Hierarchies of adaptive experts 987 

Gating 
Network 

Figure 1: Two hierarchical levels of adaptive experts. All of the expert networks 
and all of the gating networks have the same input vector. 

We assume that the outputs of the gating networks are given by the normalizing 
softmax function (Bridle) 1989): 

e S , 

gi = 'Ii:"""" S 
~j e J 

(3) 

and 

gjli = Lk eSkl. 
(4) 

where Si and Sjli are the weighted sums arriving at the output units of the corre­
sponding gating networks. 

The gating networks in the architecture are essentially classifiers that are responsi­
ble for partitioning the input space. Their choice of partition is based on the ability 



988 Jordan and Jacobs 

of the expert networks to model the input-output functions within their respec­
tive regions (as quantified by their posterior probabilities; see below). The nested 
arrangement of gating networks in the architecture (cf. Figure 1) yields a nested 
partitioning much like that found in CART or MARS. The architecture is a more 
general mathematical object than a CART or MARS tree, however, given that the 
gating networks have non-binary outputs and given that they may form nonlinear 
decision surfaces. 

3 THE LEARNING ALGORITHM 

We derive a learning algorithm for our architecture by developing a probabilistic 
model of a tree-structured estimation problem. The environment is assumed to be 
characterized by a finite number of stochastic processes that map input vectors x 
into output vectors y*. These processes are partitioned into nested collections of 
processes that have commonalities in their input-output parameterizations. Data 
are assumed to be generated by the model in the following way. For any given x, 
collection i is chosen with probability 9i, and a particular process j is then chosen 
with conditional probability 9jli. The selected process produces an output vector 
y* according to the probability density f(y* I x; Yij), where Yij is a vector of 
parameters. The total probability of generating y* is: 

P(y* I x) = L 9i L 9jld(Y* I x; Yij), (5) 
j 

where 9i, 9jli, and Yij are unknown nonlinear functions of x. 

Treating the probability P(y* Ix) as a likelihood function in the unknown param­
eters 9i, 9j Ii, and Yij, we obtain a learning algorithm by using gradient ascent to 
maximize the log likelihood. Let us assume that the probability density associated 
with the residual vector (y* - Yij) is the multivariate normal density, where Yij is 
the mean of the ph process of the ith cluster (or the (i, j)th expert network) and 
Eij is its covariance matrix. Ignoring the constant terms in the normal density, the 
log likelihoo d is: 

In L = In L 9i L 9jlilE ij I-~ e-!(Y*-Y'J)Tl:;-;l(Y*-Y'J). 

j 

(6) 

(7) 

which is the posterior probability that a process in the ith cluster generates a par­
ticular target vector y*. We also define the conditional posterior probability: 

9 ·I·IE "1- ~ e - ~(Y* - Y'J )Tl;;-;l (y* -Y'J) 
h . . - J i iJ 

Jlz - L I~ I ~ _'!'(Y*-Y )Tl:-l(y*_y )' 
9 'I' ~'. - 2 e 2 'J'J 'J j J i ZJ 

(8) 

which is the conditional posterior probability that the ph expert in the ith cluster 
generates a particular target vector y*. Differentiating 6, and using Equations 3, 4, 



Hierarchies of adaptive experts 989 

7, and 8, we obtain the partial derivative of the log likelihood with respect to the 
output of the (i,j)th expert network: 

f) In L of< 

-£)- = hi hjli (y - Yij). (9) 
UYij 

This partial derivative is a supervised error term modulated by the appropriate 
posterior probabilities . Similarly, the partial derivatives of the log likelihood with 
respect to the weighted sums at the output units of the gating networks are given 
by: 

(10) 

and 
f) In L 
-- - h· (h 'I' - g'I ') £) -! J! J!' 
USjli 

(ll) 

These derivatives move the prior probabilities associated with the gating networks 
toward the corresponding posterior probabilities. 

It is interesting to note that the posterior probability hi appears in the gradient for 
the experts in the ith cluster (Equation 9) and in the gradient for the gating network 
in the ith cluster (Equation 11). This ties experts within a cluster to each other and 
implies that experts within a cluster tend to learn similar mappings early in the 
training process. They differentiate later in training as the probabilities associated 
with the cluster to which they belong become larger. Thus the architecture tends 
to acquire coarse structure before acquiring fine structure, This feature of the 
architecture is significant because it implies a natural robustness to problems with 
overfitting in deep hierarchies. 

We have also found it useful in practice to obtain an additional degree of control over 
the coarse-to-fine development of the algorithm. This is achieved with a heuristic 
that adjusts the learning rate at a given level of the tree as a function of the time­
average entropy of the gating network at the next higher level of the tree: 

j.l ' li(t + 1) = G:j.l'li(f) + f3(Mi + L gili In gjli) 
j 

where Mi is the maximum possible entropy at level i of the tree. This equation 
has the effect that the networks at level i + 1 are less inclined to diversify if the 
superordinate cluster at level i has yet to diversify (where diversification is quantified 
by the entropy of the gating network). 

4 SIMULATIONS 

We present simulation results from an unsupervised learning task and two super­
vised learning tasks. 

In the unsupervised learning task, the problem was to extract regularities from a set 
of measurements of leaf morphology. Two hundred examples of maple, poplar, oak, 
and birch leaves were generated from the data shown in Table 1. The architecture 
that we used had two hierarchical levels, two clusters of experts, and two experts 



990 Jordan and Jacobs 

Maple Poplar Oak Birch 
Length 3,4,5,6 1,2,3 5,6,7,8,9 2,3,4,5 
Width 3,4,5 1,2 2,3,4,5 1,2,3 
Flare 0 0,1 0 1 
Lobes 5 1 7,9 1 

Margin Entire Crenate, Serrate Entire Doubly-Serrate 
Apex Acute Acute Rounded Acute 
Base Truncate Rounded Cumeate Rounded 
Color Light Yellow Light Dark 

Table 1: Data used to generate examples of leaves from four types of trees. The 
columns correspond to the type of tree; the rows correspond to the features of a 
tree 's leaf. The table's entries give the possible values for each feature for each type 
of leaf. See Preston (1976). 

within each cluster. Each expert network was an auto-associator that maps forty­
eight input units into forty-eight output units through a bottleneck of two hidden 
units . Within the experts, backpropagation was used to convert the derivatives 
in Equation 9 into changes to the weights. The gating networks at both levels 
were affine. We found that the hierarchical architecture consistently discovers the 
decomposition ,of the data that preserves the natural classes of tree species (cf. 
Preston, 1976). That is, within one cluster of expert networks, one expert learns 
the maple training patterns and the other expert learns the oak patterns. Within the 
other cluster, one expert learns the poplar patterns and the other expert learns the 
birch patterns . Moreover , due to the use of the autoassociator experts, the hidden 
unit representations within each expert are principal component decompositions 
that are specific to a particular species of leaf. 

We have also studied a supervised learning problem in which the learner must 
predict the grayscale pixel values in noisy images of human faces based on values of 
the pixels in surrounding 5x5 masks. There were 5000 masks in the training set. We 
used a four-level binary tree, with affine experts (each expert mapped from twenty­
five input units to a single output unit) and affine gating networks. We compared 
the performance of the hierarchical architecture to CART and to backpropagation.1 

In the case of backpropagation and the hierarchical architecture, we utilized cross­
validation (using a test set of 5000 masks) to stop the iterative training procedure. 
As shown in Figure 2, the performance of the hierarchical architecture is comparable 
to backpropagation and better than CART. 

Finally we also studied a system identification problem involving learning the sim­
ulated forward dynamics of a four-joint, three-dimensional robot arm. The task 
was to predict the joint accelerations from the joint positions, sines and cosines of 
joint positions, joint velocities, and torques. There were 6000 data items in the 
training set. We used a four-level tree with trinary splits at the top two levels, 
and binary splits at lower levels. The tree had affine experts (each expert mapped 

1 Fifty hidden units were used in the backpropagation network, making the num­
ber of parameters in the backpropagation network and the hierarchical network roughly 
comparable. 



Hierarchies of adaptive experts 991 

0.1 -

0.08 -

Relative 0.06-

Error 
0.04 -

0.02 -

CART BP Hier4 

Figure 2: The results on the image restoration task. The dependent measure is 
relative error on the test set. (cf. Breiman, et al., 1984) . 

from twenty input units to four output units) and affine gating networks. We once 
again compared the performance of the hierarchical architecture to CART and to 
back propagation. In the case of back propagation and the hierarchical architecture, 
we utilized a conjugate gradient technique, and halted the training process after 
1000 iterations. In the case of CART, we ran the algorithm four separate times on 
the four output variables. Two of these runs produced 100 percent relative error, 
a third produced 75 percent relative error , and the fourth (the most proximal joint 
acceleration) yielded 46 percent relative error, which is the value we report in Fig­
ure 3. As shown in the figure, the hierarchical architecture and backpropagation 
achieve comparable levels of performance. 

5 DISCUSSION 

In this paper we have presented a neural network learning algorithm that captures 
aspects of the recursive approach to function approximation exemplified by algo­
rithms such as CART and MARS . The results obtained thus far suggest that the 
algorithm is computationally viable, comparing favorably to backpropagation in 
terms of generalization performance on a set of small and medium-sized tasks. The 
algorithm also has a number of appealing theoretical properties when compared to 
backpropagation: In the affine case, it is possible to show that (1) no backward 
propagation of error terms is required to adjust parameters in multi-level trees (cf. 
the activation-dependence of the multiplicative terms in Equat.ions 9 and 11), (2) 
all of the parameters in the tree are ma..ximum likelihood estimators . The latter 
property suggests that the affine architecture may be a particularly suitable archi­
tecture in which to explore the effects of priors on the parameter space (cf. Nowlan 



992 Jordan and Jacobs 

0.6 -

0.4 -

Relative 

Error 

0.2 -

0.0-'----
CART BP Hier4 

Figure 3: The results on the system identification task. 

& Hinton, this volume). 

Acknowledgements 

This project was supported by grant IRI-9013991 awarded by the National Science 
Foundation, by a grant from Siemens Corporation, by a grant from ATR Auditory 
and Visual Perception Research Laboratories, by a grant from the Human Frontier 
Science Program, and by an NSF Presidential Young Investigator Award to the first 
author. 

References 

Breiman, L., Friedman, J .H., Olshen, R.A., & Stone, C.J. (1984) Classification and 
Regression Trees. Belmont, CA: Wadsworth International Group. 

Bridle, J. (1989) Probabilistic interpretation of feedforward classification network 
outputs, with relationships to statistical pattern recognition. In F. Fogelman-Soulie 
& J. Herault (Eds.), Neuro-computing: Algorithms, Architectures, and Applications. 
New York: Springer-Verlag. 

Friedman, J .H. (1990) Multivariate adaptive regression splines. The Annals of 
Statistics, 19,1-141. 

Jacobs, R.A, Jordan, M.L, Nowlan, S.J., & Hinton, G.E. (1991) Adaptive mixtures 
of local experts. Neural Computation, 3, 79-87. 

Preston, R.J. (1976) North American Trees (Third Edition). Ames, IA: Iowa State 
University Press. 


