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ABSTRACT 

This paper presents PARSEC-a system for generating connectionist 
parsing networks from example parses. PARSEC is not based on formal 
grammar systems and is geared toward spoken language tasks. PARSEC 
networks exhibit three strengths important for application to speech pro­
cessing: 1) they learn to parse, and generalize well compared to hand­
coded grammars; 2) they tolerate several types of noise; 3) they can 
learn to use multi-modal input. Presented are the PARSEC architecture 
and performance analyses along several dimensions that demonstrate 
PARSEC's features. PARSEC's performance is compared to that of tra­
ditional grammar-based parsing systems. 

1 INTRODUCTION 

While a great deal of research has been done developing parsers for natural language, ade­
quate solutions for some of the particular problems involved in spoken language have not 
been found. Among the unsolved problems are the difficulty in constructing task-specific 
grammars, lack of tolerance to noisy input, and inability to effectively utilize non-sym­
bolic information. This paper describes PARSEC-a system for generating connectionist 
parsing networks from example parses. 

*Now with Alliant Techsystems Research and Technology Center (jain@rtc.atk.com). 
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Figure 1: PARSEC's high-level architecture 

PARSEC networks exhibit three strengths: 

• They automatically learn to parse, and generalize well compared to hand-coded 
grammars. 

• They tolerate several types of noise without any explicit noise modeling. 

• They can learn to use multi-modal input such as pitch in conjunction with syntax and 
semantics. 

The PARSEC network architecture relies on a variation of supervised back-propagation 
learning. The architecture differs from some other connectionist approaches in that it is 
highly structured, both at the macroscopic level of modules, and at the microscopic level 
of connections. Structure is exploited to enhance system performance.1 

Conference registration dialogs formed the primary development testbed for PARSEC. A 
separate speech recognition effort in conference registration provided data for evaluating 
noise-tolerance and also provided an application for PARSEC in speech-to-speech transla­
tion (Waibel et al. 1991). 

PARSEC differs from early connectionist work in parsing (e.g. Fanty 1985; Selman 1985) 
in its emphasis on learning. It differs from recent connectionist approaches (e.g. Elman 
1990; Miikkulainen 1990) in its emphasis on performance issues such as generalization 
and noise tolerance in real tasks. This papers presents the PARSEC architecture, its train­
ing algorithms, and performance analyses that demonstrate PARSEC's features. 

2 PARSEC ARCHITECTURE 

The PARSEC architecture is modular and hierarchical. Figure 1 shows the high-level 
architecture. PARSEC can learn to parse complex English sentences including multiple 
clauses, passive constructions, center-embedded constructions, etc. The input to PARSEC 
is presented sequentially, one word at a time. PARSEC produces a case-based representa­
tion of a parse as the input sentence develops. 

IpARSEC is a generalization of a previous connectionist parsing architecture (Jain 1991). For a 
detailed exposition of PARSEC, please refer to Jain' s PhD thesis (in preparation). 
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Figure 2: Basic structure of a PARSEC module 

The parse for the sentence, "I will send you a form immediately:' is: 

([statement] 
([clause] 

([agent] 
([action] 
([recipient] 
([patient] 
([time] 

I) 
will send) 
you) 
a form) 
immediately))) 

Input words are represented as binary feature patterns (primarily syntactic with some 
semantic features). These feature representations are hand-crafted. 

Each module of PARSEC can perform either a transformation or a labeling of its input. 
The output function of each module is represented across localist connectionist units. The 
actual transformations are made using non-connectionist subroutines.2 Figure 2 shows the 
basic structure of a PARSEC module. The bold ovals contain units that learn via back­
propagation. 

There are four steps in generating a PARSEC network: 1) create an example parse file; 2) 
define a lexicon; 3) train the six modules; 4) assemble the full network. Of these, only the 
first two steps require substantial human effort, and this effort is small relative to that 
required for writing a grammar by hand. Training and assembly are automatic. 

2.1 PREPROCESSING MODULE 

This module marks alphanumeric sequences, which are replaced by a single special 
marker word. This prevents long alphanumeric strings from overwhelming the length con­
straint on phrases. Note that this is not always a trivial task since words such as "a" and 
"one" are lexically ambiguous. 

INPUT: "It costs three hundred twenty one dollars." 
OUTPUT: "It costs ALPHANUM dollars." 

Prhese transfonnations could be carried out by connectionist networks, but at a substantial com­
putational cost for training and a risk of undergeneralization. 
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2.2 PHRASE MODULE 

The Phrase module processes the evolving output of the Prep module into phrase blocks. 
Phrase blocks are non-recursive contiguous pieces of a sentence. They correspond to sim­
ple noun phrases and verb groups.3 Phrase blocks are represented as grouped sets of units 
in the network. Phrase blocks are denoted by brackets in the following: 

INPUT: "I will send you a new form in the morning." 
OUTPUT: "[I] [will send] [you] [a new form] [in the morning]." 

2.3 CLAUSE MAPPING MODULE 

The Clause module uses the output of the Phrase module as input and assigns the clausal 
structure. The result is an unambiguous bracketing of the phrase blocks that is used to 
transform the phrase block representation into representations for each clause: 

INPUT: "[I] [would like] [to register] [for the conference]." 
OUTPUT: "([I] [would like]) ([to register] [for the conference]}." 

2.4 ROLE LABELING MODULE 

The Roles module associates case-role labels with each phrase block in each clause. It also 
denotes attachment structure for prepositional phrases ("MOD-I" indicates that the cur­
rent phrase block modifies the previous one): 

INPUT: "( [The titles] [of papers] [are printed] [in the forms])" 
OUTPUT: "([The titles] [of papers] [are printed] [in the forms])" 

PATIENT MOD-l ACTION LOCATION 

2.S INTERCLAUSE AND MOOD MODULES 

The Interclause and Mood modules are similar to the Roles module. They both assign 
labels to constituents, except they operate at higher levels. The Interclause module indi­
cates, for example, subordinate and relative clause relationships. The Mood module indi­
cates the overall sentence mood (declarative or interrogative in the networks discussed 
here). 

3 GENERALIZATION 
Generalization in large connectionist networks is a critical issue. This is especially the 
case when training data is limited. For the experiments reported here, the training data was 
limited to twelve conference registration dialogs containing approximately 240 sentences 
with a vocabulary of about 400 words. Despite the small corpus, a large number of English 
constructs were covered (including passives, conditional constructions, center-embedded 
relative clauses, etc.). 

A set of 117 disjoint sentences was obtained to test coverage. The sentences were gener­
ated by a group of people different from those that developed the 12 dialogs. These sen­
tences used the same vocabulary as the 12 dialogs. 

3Abney has described a similar linguistic unit called a chunk (Abney 1991). 
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3.1 EARLY PARSEC VERSIONS 

Straightforward training of a PARSEC network resulted in poor generalization perfor­
mance, with only 16% of the test sentences being parsed correctly. One of the primary 
sources for error was positional sensitivity acquired during training of the three transfor­
mational modules. In the Phrase module, for example, each of the phrase boundary detec­
tor units was supposed to learn to indicate a boundary between words in specific positions. 

Each of the units of the Phrase module is perfonning essentially the same job, but the net­
work doesn't "know" this and cannot learn this from a small sample set. By sharing the 
connection weights across positions, the network is forced to be position insensitive (sim­
ilar to TDNN's as in Waibel et al. 1989). After modifying PARSEC to use shared weights 
and localized connectivity in the lower three modules, generalization performance 
increased to 27%. The primary source of error shifted to the Roles module. 

Part of the problem could be ascribed to the representation of phrase blocks. They were 
represented across rows of units that each define a word. In the phrase block "the big dog," 
"dog" would have appeared in row 3. This changes to row 2 if the phrase block is just "the 
dog." A network had to learn to respond to the heads of phrase blocks even though they 
moved around. An augmented phrase block representation in which the last word of the 
phrase block was copied to position 0 solved this problem. With the augmented phrase 
block representation coupled with the previous improvements, PARSEC achieved 44% 
coverage. 

3.2 PARSEC: FINAL VERSION 

The final version of PARSEC uses all of the previous enhancements plus a technique 
called Programmed Constructive Learning (PCL). In PCL, hidden units are added to a 
network one at a time as they are needed. Also, there is a specific series of hidden unit 
types for each module of a PARSEC network. The hidden unit types progress from being 
highly local in input connectivity to being more broad. This forces the networks to learn 
general predicates before specializing and using possibly unreliable infonnation. 

The final version of PARSEC was used to generate another parsing network.4 Its perfor­
mance was 67% (78% including near-misses). Table 1 summarizes these results. 

3.3 COMPARISON TO HAND-CODED GRAMMARS 

PARSEC's performance was compared to that of three independently constructed gram­
mars. Two of the grammars were commissioned as part of a contest where the first prize 
($700) went to the grammar-writer with best coverage of the test set and the second prize 
($300) went to the other grammar writer.S The third grammar was independently con­
structed as part of the JANUS system (described later). The contest grammars achieved 
25% and 38% coverage, and the other grammar achieved just 5% coverage of the test set 

4nus [mal parsing network was not trained all the way to completion. Training to completion 
hurts generalization performance. 

Srrne contest participants had 8 weeks to complete their grammars, and they both spent over 60 
hours doing so. The grammar writers work in Machine Translation and Computational Linguis­
tics and were quite experienced. 
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Table 1: PARSEC's comparative perfonnance 

PARSECV4 
Grammar 1 
Grammar 2 
Grammar 3 

Coverage 
67% (78%) 
38% (39%) 
25% (26%) 

5% (5%) 

Noise 
77% 

70% 

Ungram. 
66% 
34% 
38% 
2% 

(see Table 1). All of the hand-coded grammars produced NIL parses for the majority of 
test sentences. In the table, numbers in parentheses include near-misses. 

PARSEC's performance was substantially better than the best of the hand-coded gram­
mars. PARSEC has a systematic advantage in that it is trained on the incremental parsing 
task and is exposed to partial sentences during training. Also, PARSEC's constructive 
learning approach coupled with weight sharing emphasizes local constraints wherever 
possible, and distant variations in input structure do not adversely affect parsing. 

4 NOISE TOLERANCE 

The second area of performance analysis for PARSEC was noise tolerance. Preliminary 
comparisons between PARSEC and a rule-based parser in the JANUS speech-to-speech 
translation system were promising (Waibel et al. 1991). More extensive evaluations cor­
roborated the early observations. In addition, PARSEC was evaluated on synthetic 
ungrammatical sentences. Experiments on spontaneous speech using DARPA's ATIS task 
are ongoing. 

4.1 NOISE IN SPEECH-TO-SPEECH TRANSLATION 

In the JANUS system, speech recognition is provided by an LPNN (Tebelskis et al. 1991), 
parsing can be done by a PARSEC network or an LR parser, translation is accomplished 
by processing the interlingual output of the parser using a standard language generation 
module, and speech generation is provided by off-the-shelf devices. The system can be run 
using a single (often noisy) hypothesis from the LPNN or a ranked list of hypotheses. 

When run in single-hypothesis mode, JANUS using PARSEC correctly translated 77% of 
the input utterances, and J ANUS using the LR parser (Grammar 3 in the table) achieved 
70%. The PARSEC network was able to parse a number of incorrect recognitions well 
enough that a successful translation resulted. However, when run in multi-hypothesis 
mode, the LR parser achieved 86% compared to PARSEC's 80%. The LR parser utilized a 
very tight grammar and was able to robustly reject hypotheses that deviated from expecta­
tions. This allowed the LR parser to "choose" the correct hypothesis more often than PAR­
SEC. PARSEC tended to accept noisy utterances that produced incorrect translations. Of 
course, given that the PARSEC network's coverage was so much higher than that of the 
grammar used by the LR parser, this result is not surprising. 

4.2 SYNTHETIC UNGRAMMATICALITY 

Using the same set of grammars for comparison, the parsers were tested on ungrammatical 
input from the CR task. These sentences were corrupted versions of sentences used for 



Generalization Performance in PARSEC-A Structured Connectionist Parsing Architecture 215 

FILE: s.O.O "Okay: duration = 409.1 msec, mean fraq = 113.2 
0.1 •••••••• Il.. . ........... . 
0.0 ••••••••••••••••••••••••••••••••••••••••••••••••• 

FILE: q.O.O "Okay?- duration = 377.0 msec, mean freq = 137.3 
0.6 

0.5 
0.4 

0.3 
0.2 
0.1 •••••••• • ••••••••••••••••• 
0.0 ••••••••••••••••••••••••••• 

Figure 3: Smoothed pitch contours. 

training. Training sentences were used to decouple the effects of noise from coverage. 
Table 1 shows the results. They essentially mirror those of the coverage tests. PARSEC is 
substantially less sensitive to such effects as subject/verb disagreement, missing detennin­
ers, and other non-catastrophic irregularities. 

Some researchers have augmented grammar-based systems to be more tolerant of noise 
(e.g. Saito and Tomita 1988). However, the PARSEC network in the test reported here was 
trained only on grammatical input and still produced a degree of noise tolerance for free. 
In the same way that one can explicitly build noise tolerance into a grammar-based sys­
tem, one can train a PARSEC network on input that includes specific types of noise. The 
result should be some noise tolerance beyond what was explicitly trained. 

5 MULTI-MODAL INPUT 

A somewhat elusive goal of spoken language processing has been to utilize information 
from the speech signal beyond just word sequences in higher-level processing. It is well 
known that humans use such infonnation extensively in conversation. Consider the utter­
ances "Okay." and "Okay?" Although semantically distinct, they cannot be distinguished 
based on word sequence, but pitch contours contain the necessary infonnation (Figure 3). 

In a grammar-based system, it is difficult to incorporate real-valued vector input in a use­
ful way. In a PARSEC network, the vector is just another set of input units. The Mood 
module of a PARSEC network was augmented to contain an additional set of units that 
contained pitch infonnation. The pitch contours were smoothed output from the OGI Neu­
ral Network Pitch Tracker (Barnard et al. 1991). PARSEC added another hidden unit to 
utilize the new infonnation. 

The trained PARSEC network was tolerant of speaker variation, gender variation, utter­
ance variation (length and content), and a combination of these factors. Although not 
explicitly trained to do so, the network correctly processed sentences that were grammati­
cal questions but had been pronounced with the declining pitch of a typical statement. 

Within the JANUS system, the augmented PARSEC network brings new functionality. 
Intonation affects translation in JANUS when using the augmented PARSEC network. 
The sentence, "This is the conference office." is translated to "Kaigi jimukyoku desu." 
"This is the conference office?" is translated to "Kaigi jimukyoku desuka?" This required 
no changes in the other modules of the JANUS system. It also should be possible to use 
other types of infonnation from the speech signal to aid in robust parsing (e.g. energy pat­
terns to disambiguate clausal structure). 
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6 CONCLUSION 

PARSEC is a system for generating connectionist parsing networks from training exam­
ples. Experiments using a conference registration conversational task showed that PAR­
SEC: 1) learns and generalizes well compared to hand-coded grammars; 2) tolerates noise: 
recognition errors and ungrammaticality; 3) successfully learns to combine intonational 
infonnation with syntactic/semantic infonnation. Future work with PARSEC will be con­
tinued by extending it to new languages, larger English tasks, and speech tasks that 
involve tighter coupling between speech recognition and parsing. There are numerous 
issues in NLP that will be addressed in the context of these research directions. 
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