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Abstract 

Networks for reconstructing a sparse or noisy function often use an edge 
field to segment the function into homogeneous regions, This approach 
assumes that these regions do not overlap or have disjoint parts, which is 
often false. For example, images which contain regions split by an occlud­
ing object can't be properly reconstructed using this type of network. We 
have developed a network that overcomes these limitations, using support 
maps to represent the segmentation of a signal. In our approach, the sup­
port of each region in the signal is explicitly represented. Results from 
an initial implementation demonstrate that this method can reconstruct 
images and motion sequences which contain complicated occlusion. 

1 Introduction 

The task of efficiently approximating a function is central to the solution of many 
important problems in perception and cognition. Many vision algorithms, for in­
stance, integrate depth or other scene attributes into a dense map useful for robotic 
tasks such as grasping and collision avoidance. Similarly, learning and memory are 
often posed as a problem of generalizing from stored observations to predict future 
behavior, and are solved by interpolating a surface through the observations in an 
appropriate abstract space. Many control and planning problems can also be solved 
by finding an optimal trajectory given certain control points and optimization con­
straints. 
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In general, of course, finding solutions to these approximation problems is an ill­
posed problem, and no exact answer can be found without the application of some 
prior knowledge or assumptions. Typically, one assumes the surface to be fit is either 
locally smooth or has some particular parametric form or basis function description. 
Many successful systems have been built to solve such problems in the cases where 
these assumptions are valid. However in a wide range of interesting cases where 
there is no single global model or universal smoothness constraint, such systems 
have difficulty. These cases typically involve the approximation or estimation of 
a heterogeneous function whose typical local structure is known, but which also 
includes an unknown number of abrupt changes or discontinuities in shape. 

2 Approximation of Heterogeneous Functions 

In order to accurately approximate a heterogeneous function with a minimum num­
ber of parameters or interpolation units, it is necessary to divide the function into 
homogeneous chunks which can be approximated parsimoniously. When there is 
more than one homogeneous chunk in the signal/function, the data must be seg­
mented so that observations of one object do not intermingle with and corrupt the 
approximation of another region. 

One simple approach is to estimate an edge map to denote the boundaries of ho­
mogeneous regions in the function, and then to regularize the function within such 
boundaries. This method was formalized by Geman and Geman (1984), who de­
veloped the "line-process" to insert discontinuities in a regularization network. A 
regularized solution can be efficiently computed by a neural network, either using 
discrete computational elements or analog circuitry (Poggio et al. 1985; Terzopou­
los 1988). In this context, the line-process can be thought of as an array of switches 
placed between interpolation nodes (Figure la). As the regularization proceeds in 
this type of network, the switches of the line process open and prevent smoothing 
across suspected discont.inuities. Essentially, these switches are opened when the 
squared difference between neighboring interpolated values exceeds some thresh­
old (Blake and Zisserman 1987; Geiger and Girosi 1991). In practice a continuation 
method is used to avoid problems with local minima, and a continuous non-linearity 
is used in place of a boolean discontinuity. The term "resistive fuse" is often used 
to describe these connections between interpolation sites (Harris et al. 1990). 

3 Limitations of Edge-based Segmentation 

An edge-based representation assumes that homogeneous chunks of a function are 
completely connected, and have no disjoint subregions. For the visual reconstruction 
task, this implies that the projection of an object onto the image plane will always 
yield a single connected region. While this may be a reasonable assumption for 
certain classes of synthetic images, it is not valid for realistic natural images which 
contain occlusion and/or transparent phenomena. 

While a human observer can integrate over gaps in a region split by occlusion, the 
line process will prevent any such smoothing, no matter how close the subregions 
are in the image plane. When these disjoint regions are small (as when viewing 
an object through branches or leaves), the interpolated values provided by such a 
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(a) (b) 

Figure 1: (a) Regularization network with line-process. Shaded circles represent 
data nodes, while open circles represent interpolation nodes. Solid rectangles indi­
cate resistorsj slashed rectangles indicate "resistive fuses". (b) Regularization net­
work with explicit support mapSj support process can be implemented by placing 
resistive fuses between data and interpolation nodes (other constraints on support 
are described in text). 

network will not be reliable, since observation noise can not be averaged over a large 
number of samples. 

Similarly, an edge-based approach cannot account for the perception of motion 
transparency, since these stimuli have no coherent local neighborhoods. Human 
observers can easily interpolate 3-D surfaces in transparent random-dot motion 
displays (Husain et al. 1989). In this type of display, points only last a few frames, 
and points from different surfaces are transparently intermingled. With a line­
process, no smoothing or integration would be possible, since neighboring points 
in the image belong to different 3-D surfaces. To represent and process images 
containing this kind of transparent phenomena, we need a framework that does not 
rely on a global 2D edge map to make segmentation decisions. By generalizing 
the regularization/surface interpolation paradigm to use support. maps rather than 
a line-process, we can overcome limitations the discontinuity approach has with 
respect to transparency. 

4 U sing Support Maps for Segmentation 

Our approach decomposes a heterogeneous function into a set of individual approx­
imations corresponding to the homogeneous regions of the function. Each approx­
imation covers a specific region, and ues a support map to indicate which points 
belong to that region. Unlike an edge-based representation, the support of an ap­
proximation need not be a connected region - in fact, the support can consist of a 
scattered collection of independent points! 
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For a single approximation, it is relatively straight-forward to compute a support 
map. Given an approximation, we can find the support it has in the function by 
thresholding the residual error of that approximation. In terms of analog regular­
ization, the support map (or support "process") can be implemented by placing a 
resistive fuse between the data and the interpolating units (Figure 1b). 

A single support map is limited in usefulness, since only one region can be approxi­
mated. In fact, it reduces to the "outlier" rejection paradigm of certain robust esti­
mation methods, which are known to have severe theoretical limits on the amount 
of outlier contamination they can handle (Meer et al. 1991; Li 1985). To represent 
true heterogeneous stimuli, multiple support maps are needed, with one support 
map corresponding to each homogeneous (but not necessarily connected) region. 

We have developed a method to estimate a set of these support maps, based on find­
ing a minimal length description of the function. We adopt a three-step approach: 
first, we generate a set of candidate support maps using simple thresholding tech­
niques. Second, we find the subset of these maps which minimally describes the 
function, using a network optimization to find the smallest set of maps that covers 
all the observations. Finally, we re-allocate the support in this subset, such that 
only the approximation with the lowest residual error supports a particular point. 

4.1 Estimating Initial Support Fields 

Ideally, we would like to consider all possible support patterns of a given dimension 
as candidate support maps. Unfortunately, the combinatorics of the problem makes 
this impossible; instead, we attempt to find a manageable number of initial maps 
which will serve as a useful starting point. 

A set of candidate approximations can be obtained in many ways. In our work we 
have initialized their surfaces either using a table of typical values or by fitting a 
small fixed regions of the function. We denote each approximation of a homogeneous 
region as a tuple, (ai,si,ui,fi), where si = {Sij} is a support map, ui = {Uij} is 
the approximated surface, and ri = {l'ij} is the residual error computed by taking 
the difference of ui with the observed data. (The scalar ai is used in deciding 
which subset of approximations are used in the final representation.) The support 
fields are set by thresholding the residual field based on our expected (or assumed) 
observation variance e. 

if (rij)2 < e } 
otherwise 

4.2 Estimating the Number of Regions 

Perhaps the most critical problem in recovering a good heterogeneous description 
is estimating how many regions are in the function. Our approach to this problem 
is based on finding a small set of approximations which constitutes a parsimonious 
description of the function. We attempt to find a subset of the candidate approxima­
tions whose support maps are a minimal covering of the function, e.g. the smallest 
subset whose combined support covers the entire function. In non-degenerate cases 
this will consist of one approximation for each real region in the function. 
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The quantity ai indicates if approximation i is included in the final representation. 
A positive value indicates it is "active" in the representation; a negative value 
indicates it is excluded from the representation. Initially ai is set to zero for each 
approximation; to find a minimal covering, this quantity is dynamically updated as 
a function of the number of points uniquely supported by a particular support map. 

A point is uniquely supported in a support map if it is supported by that map and 
no other. Essentially, we find these points by modulating the support values of a 
particular approximation with shunting inhibition from all other active approxima­
tions. To compute Cij, a flag that indicates whether or not point j of map i is 
uniquely supported, we multiply each support map with the product of the inverse 
of all other maps whose aj value indicates it is active: 

Cij = Sij II (1 - SkjO"(ak» 

k~i 

where 0"0 is a sigmoid function which converts the real-valued ai into a multiplica­
tive factor in the range (0, 1). The quantity Cij is close to one at uniquely supported 
points, and close to zero for all other points. 

If there are a sufficient number of uniquely supported points in an approximation, 
we increase ai, otherwise it is decreased: 

d 
dt ai = L Cij - a. (1) 

j 

where a specifies the penalty for adding another approximation region to the rep­
resentation. This constant determines the smallest number of points we are willing 
to have constitute a distinct region in the function. The network defined by these 
equations has a corresponding Lyoponov function: 

N M 

E = L ai( - I)O"(Sij) II (1 - O"(Skj )O"(ak») + a) 
i j k~i 

so it will be guaranteed to converge to a local minima if we bound the values of ai 

(for fixed Sij and a). After convergence, those approximations with positive ai are 
kept, and the rest are discarded. Empirically we have found the local minima found 
by our network correspond to perceptually salient segmentations. 

4.3 Refining Support Fields 

Once we have a set of approximations whose support maps minimally cover the 
function (and presumably correspond to the actual regions of the function), we can 
refine the support using a more powerful criteria than a local threshold. First, we 
interpolate the residual error values through unsampled points, so that support can 
be computed even where there are no observations. Then we update the support 
maps based on which approximation has the lowest residual error for a given point: 

if (rij)2 < (J 

and (rij)2 = min{klak>o}(rkj)2 
-- { 0

1 
Sij 

otherwise 
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Figure 2: (a) Function consisting of constant regions with added noise. (b) Same 
function sparsely sampled. (c) Support maps found to approximate uniformly sam­
pled function. (d) Support maps found for sparsely sampled function. 

5 Results 

We tested how well our network could reconstruct functions consisting of piecewise 
constant patches corrupted with random noise of known variance. Figure 2( a) 
shows the image containing the function the used in this experiment. We initialized 
256 candidate approximations, each with a different constant surface. Since the 
image consisted of piecewise constant regions, the interpolation performed by each 
approximation was to compute a weighted average of the data over the supported 
points. Other experiments have used more powerful shape models, such as thin-plate 
or membrane Markov random fields, as well as piecewise-quadratic polynomials 
(Darrell et al. 1990). 

Using a penalty term which prevented approximations with 10 or fewer support 
points to be considered (0' = 10.0), the network found 5 approximations which cov­
ered the entire image; their support maps are shown in Figure 2( c). The estimated 
surfaces corresponded closely to the values in the constant patches before noise was 
added. We ran a the same experiment on a sparsely sampled version of this func­
tion, as shown in Figure 2(b) and (d), with similar results and only slightly reduced 
accuracy in the recovered shape of the support maps. 
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Figure 3: ( a) First frame from image sequence and (b) recovered regions. (c) First 
frame from random dot sequence described in text. (d) Recovered parameter values 
across frames for dots undergoing looming motion; solid line plots Tz , dotted line 
plots Tx , and circles plot Ty for each frame. 

We have also applied our framework to the problem of motion segmentation. For 
homogeneous data, a simple "direct" method can be used to model image motion 
(Horn and Weldon 1988). Under this assumption, the image intensities for a region 
centered at the origin undergoing a translation (Tx, T y, Tz ) satisfy at each point 

dI dI dI dI dI 
o = dt + Tx dx + Ty dy + Tz (x dx + y dy) 

where I is the image function. Each approximation computes a motion estimate 
by selecting a T vector which minimizes the square of the right hand side of this 
equation over its support map, using a weighted least-squares algorithm. The resid­
ual error at each point is then simply this constraint equation evaluated with the 
particular translation estimate. 

Figure 3( a) shows the first frame of one sequence, containing a person moving behind 
a stationary plant. Our network began with 64 candidate approximations, with the 
initial motion parameters in each distributed uniformly along the parameter axes. 
Figure 3(b) shows the segmentation provided by our method. Two regions were 
found to be needed, one for the person and one for the plant. Most of the person 
has been correctly grouped together despite the occlusion caused by the plant's 
leaves. Points that have no spatial or temporal variation in the image sequence are 
not attributed to any approximation, since they are invisible to our motion model. 
Note that there is a cast shadow moving in synchrony with the person in the scene, 
.and is thus grouped with that approximation. 
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Finally, we ran our system on the finite-lifetime, transparent random dot stimulus 
described in Section 2. Since our approach recovers a global motion estimate for each 
region in each frame, we do not need to build explicit pixel-to-pixel correspondences 
over long sequences. We used two populations of random dots, one undergoing a 
looming motion and one a rightward shift. After each frame 10% of the dots died 
off and randomly moved to a new point on the 3-D surface. Ten 128x128 frames 
were rendered using perspective projection; the first is shown in Figure 3(c) 

We applied our method independently to each trio of successive frames, and in each 
case two approximations were found to account for the motion information in the 
scene. Figure 3(d) shows the parameters recovered for the looming motion. Similar 
results were found for the translating motion, except that the Tx parameter was 
nonzero rather than Tz • Since the recovered estimates were consistent, we would 
be able to decrease the overall uncertainty by averaging the parameter values over 
successive frames. 
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