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Abstract 

Optimizing the performance of self-organizing feature maps like the Ko­
honen map involves the choice of the output space topology. We present 
a topographic product which measures the preservation of neighborhood 
relations as a criterion to optimize the output space topology of the map 
with regard to the global dimensionality DA as well as to the dimensi­
ons in the individual directions. We test the topographic product method 
not only on synthetic mapping examples, but also on speech data. In the 
latter application our method suggests an output space dimensionality of 
DA = 3, in coincidence with recent recognition results on the same data 
set. 

1 INTRODUCTION 

Self-organizing feature maps like the Kohonen map (Kohonen, 1989, Ritter et al., 
1990) not only provide a plausible explanation for the formation of maps in brains, 
e.g. in the visual system (Obermayer et al., 1990), but have also been applied to 
problems like vector quantization, or robot arm control (Martinetz et al., 1990). 
The underlying organizing principle is the preservation of neighborhood relations. 
For this principle to lead to a most useful map, the topological structure of the 
output space must roughly fit the structure of the input data. However, in technical 
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applications this structure is often not a priory known. For this reason several 
attempts have been made to modify the Kohonen-algorithm such, that not only 
the weights, but also the output space topology itself is adapted during learning 
(Kangas et al., 1990, Martinetz et al., 1991). 

Our contribution is also concerned with optimal output space topologies, but we 
follow a different approach, which avoids a possibly complicated structure of the 
output space. First we describe a quantitative measure for the preservation of neigh­
borhood relations in maps, the topographic product P. The topographic product 
had been invented under the name of" wavering product" in nonlinear dynamics in 
order to optimize the embeddings of chaotic attractors (Liebert et al., 1991) . P = 0 
indicates perfect match of the topologies. P < 0 (P > 0) indicates a folding of 
the output space into the input space (or vice versa), which can be caused by a 
too small (resp. too large) output space dimensionality. The topographic product 
can be computed for any self-organizing feature map, without regard to its specific 
learning rule. Since judging the degree of twisting and folding by visually inspec­
ting a plot of the map is the only other way of "measuring" the preservation of 
neighborhoods, the topographic product is particularly helpful, if the input space 
dimensionality of the map exceeds DA = 3 and the map can no more be visualized. 
Therefore the derivation of the topographic product is already of value by itself. 

In the second part of the paper we demonstrate the use of the topographic product 
by two examples. The first example deals with maps from a 2D input space with 
I,lonflat stimulus distribution onto rectangles of different aspect ratios, the second 
example with the map of 19D speech data onto output spaces of different dimen­
sionality. In both cases we show, how the output space topology can be optimized 
using our method. 

2 DERIVATION OF THE TOPOGRAPHIC PRODUCT 

2.1 KOHONEN.ALGORlTHM 

In order to introduce the notation necessary to derive the topographic product, we 
very briefly recall the Kohonen algorithm. It describes a map from an input space 
V into an output space A. Each node j in A has a weight vector Wj associated with 
i.t, which points into V. A stimulus v is mapped onto that node i in the output 
space, which minimizes the input space distance dV (Wi, v): 

(1) 

During a learning step, a random stimulus is chosen in the input space and mapped 
onto an output node i according to Eq. 1. Then all weights Wj are shifted towards v, 
with the amount of shift for each weight vector being determined by a neighborhood 
function h~,j: 

(2) 

(dA(j, i) measures distances in the output space.) hj i effectively restricts the nodes 
participating in the learning step to nodes in the vl~inity of i. A typical choice for 
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the neighborhood function is 

(3) 

In this way the neighborhood relations in the output space are enforced in the 
input space, and the output space topology becomes of crucial importance. Finally 
it should be mentioned that the learning step size c as well as the width of the 
neighborhood function u are decreased during the learning for the algorithm to 
converge to an equilibrium state. A typical choice is an exponential decrease . For 
a detailed discussion of the convergence properties of the algorithm, see (Ritter et 
al., 1988). 

2.2 TOPOGRAPHIC PRODUCT 

After the learning phase, the topographic product is computed as follows. For each 
output space node j, the nearest neighbor ordering in input space and output space 
is computed (nt(j) denotes the k-th nearest neighbor of j in A, n"y (j) in V). Using 
these quantities, we define the ratios 

QI(j,k) 
dV (Wj, wn~(j) 

(4) 
V ' d (Wj, wn~(j) 

Q2(j, k) 
dA (j, nt (j» (5) 
dA(j, n"y (j» 

One has QI(j, k) = Q2(j, k) = 1 only, if the k-th nearest neighbors in V and A 
coincide. Any deviations of the nearest neighbor ordering will result in values for 
QI.2 deviating from 1. However, not all differences in the nearest neighbor orderings 
in V and A are necessarily induced by neighborhood violations. Some can be due 
to locally varying magnification factors of the map, which in turn are induced by 
spatially varying stimulus densities in V. To cancel out the latter effects, we define 
the products 

For these the relations 

PI(j, k) 

P2(j, k) 

PI(j, k) > 1, 
P2 (j, k) < 1 

(6) 

(7) 

hold. Large deviations of PI (resp. P2) from the value 1 indicate neighborhood 
violations, when looking from the output space into the input space (resp. from the 
input space into the output space). In order to get a symmetric overall measure, 
we further multiply PI and P2 and find 

P3(j, k) (8) 
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Further averaging over all nodes and neighborhood orders finally yields the topo­
graphic product 

p = 
1 N N-l 

N(N - 1) f; ~ log(P3(j, k)). 

The possible values for P are to be interpreted as follows: 

P < 0: 
PO: 
P > 0: 

output space dimension DA too low, 
output space dimension DA o.k., 
output space dimension DA too high . 

(9) 

These formulas suffice to understand how the product is to be computed. A more 
detailed explanation for the rational behind each individual step of the derivation 
can be found in a forthcoming publication (Bauer et al., 1991). 

3 EXAMPLES 

We conclude the paper with two examples which exemplify how the method works. 

3.1 ILLUSTRATIVE EXAMPLE 

The first example deals with the mapping from a 2D input space onto rectangles of 
different aspect ratios. The stimulus distribution is flat in one direction, Gaussian 
Rhaped in the other (Fig 1a). The example demonstrates two aspects of our method 
at once. First it shows that the method works fine with maps resulting from nonflat 
stimulus distributions. These induce spatially varying areal magnification factors 
of the map, which in turn lead to twists in the neighborhood ordering between 
input space and output space. Compensation for such twists was the purpose of 
the multiplication in Eqs (6) and (7) . 

Table 1: Topographic product P for the map from a square input space with a 
Gaussian stimulus distribution in one direction, onto rectangles with different aspect 
ratios. The values for P are averaged over 8 networks each. The 43x 6-output space 
matches the input data best, since its topographic product is smallest. 

N 

256x 1 
128x2 
64x4 
43x6 
32x8 
21 x 12 
16x 16 

aspect ratio 

256 
64 
16 

7.17 
4 
1.75 
1 

P 

-0.04400 
-0.03099 
-0.00721 
0.00127 
0.00224 
0.01335 
0.02666 
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Figure 1: Self-organizing feature maps of a Gaussian shaped (a) 2-dimensional 
stimulus distribution onto output spaces with 128 x 2 (b), 43 x 6 (c) and 16 x 16 
(d) output nodes. The 43 x 6-output space preserves neighborhood relations best. 
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Secondly the method cannot only be used to optimize the overall output space 
dimensionality, but also the individual dimensions in the different directions (i.e. 
the different aspect ratios). If the rectangles are too long, the resulting map is 
folded like a Peano curve (Fig. Ib), and neighborhood relations are severely violated 
perpendicular to the long side of the rectangle. If the aspect ratio fits, the map has 
a regular look (Fig. lc), neighborhoods are preserved. The zig-zag-form at the 
outer boundary of the rectangle does not correspond to neighborhood violations. 
If the rectangle approaches a square, the output space is somewhat squashed into 
the input space, again violating neighborhood relations (Fig. Id). The topographic 
product P coincides with this intuitive evaluation (Tab. 1) and picks the 43 x 6-net 
38 the most neighborhood preserving one. 

3.2 APPLICATION EXAMPLE 

In our second example speech data is mapped onto output spaces of various di­
mensionality. The data represent utterances of the ten german digits, given as 
19-dimensional acoustical feature vectors (GramB et al., 1990). The P-values for 
the different maps are given in Tab. 2. For both the speaker-dependent as well as 
the speaker-independent case the method distinguishes the maps with DA = 3 as 
most neighborhood preserving. Several points are interesting about these results. 
First of all, the suggested output space dimensionality exceeds the widely used 
DA = 2. Secondly, the method does not generally judge larger output space di­
mensions as more neighborhood preserving, but puts an upper bound on DA. The 
data seems to occupy a submanifold of the input space which is distinctly lower 
than four dimensional. Furthermore we see that the transition from one to several 
speakers does not change the value of DA which is optimal under neighborhood 
considerations. This contradicts the expectation that the additional interspeaker 
variance in the data occupies a full additional dimension. 

Table 2: Topographic product P for maps from speech feature vectors in a 19D 
ir. put space onto output spaces of different dimensionality D V. 

DV N P P 
speaker- speaker-

dependent independent 

1 256 -0.156 -0.229 
2 16x 16 -0.028 -0.036 
3 7x6x6 0.019 0.007 
4 4x4x4x4 0.037 0.034 

What do these results mean for speech recognition? Let us suppose that several 
utterances of the same word lead to closeby feature vector sequences in the input 
space. If the mapping was not neighborhood preserving, one should expect the tra­
jectories in the output space to be separated considerably. If a speech recognition 
system compares these output space trajectories with reference trajectories corre­
sponding to reference utterances of the words, the probability of misclassification 
rises. So one should expect that a word recognition system with a Kohonen-map 
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preprocessor and a subsequent trajectory classifier should perform better if the 
neighborhoods in the map are preserved. 

The results of a recent speech recognition experiment coincide with these heuristic 
expectations (Brandt et al., 1991). The experiment was based on the same data 
set, made use of a Kohonen feature map as a preprocessor, and of a dynamic time­
warping algorithm as a sequence classifier. The recognition performance of this 
hybrid system turned out to be better by about 7% for a 3D map, compared to a 
2D map with a comparable number of nodes (0.795 vs. 0.725 recognition rate). 
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