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An important issue in neural computation is the dynamic range of weights 
in the neural networks. Many experimental results on learning indicate 
that the weights in the networks can grow prohibitively large with the 
size of the inputs. Here we address this issue by studying the tradeoffs 
between the depth and the size of weights in polynomial-size networks 
of linear threshold elements (LTEs). We show that there is an efficient 
way of simulating a network of LTEs with large weights by a network 
of LTEs with small weights. In particular, we prove that every depth-d, 
polynomial-size network of LTEs with exponentially large integer weights 
can be simulated by a depth-(2d + 1), polynomial-size network of LTEs 
with polynomially bounded integer weights. To prove these results, we 
use tools from harmonic analysis of Boolean functions. Our technique is 
quite general, it provides insights to some other problems. For example, 
we are able to improve the best known results on the depth of a network 
of linear threshold elements that computes the COM PARI SO N, SUM 
and PRO DU CT of two n-bits numbers, and the MAX 1M U M and the 
SORTING of n n-bit numbers. 

1 Introduction 

The motivation for this work comes from the area of neural networks, where a 
linear threshold element is the basic processing element. Many experimental results 
on learning have indicated that the magnitudes of the coefficients in the threshold 
elements grow very fast with the size of the inputs and therefore limit the practical 
use of the network. One natural question to ask is the following: How limited 

944 



Neural Computing with Small Weights 945 

is the computational power of the network if we restrict ourselves to threshold 
elements with only "small" growth in the coefficients? We answer this question by 
showing that we can trade-off an exponential growth with a polynomial growth in 
the magnitudes of coefficients by increasing the depth of the network by a factor of 
almost two and a polynomial growth in the size. 

Linear Threshold Functions: A linear threshold function f(X) is a Boolean 
function such that 

where 

f(X) = sgn(F(X» = {_II if F(X) > 0 
if F(X) < 0 

n 

F(X) = 2:= Wi . Xi + Wo 

i=l 

Throughout this paper, a Boolean function will be defined as f : {I, _I}n --+ 

{I, -I}; namely, 0 and 1 are represented by 1 and -1, respectively. Without loss 
of generality, we can assume F(X):/; 0 for all X E {I,-I}n. The coefficients Wi 

are commonly referred to as the weights of the threshold function. We denote the 
class of all linear threshold functions by LT1 • 

---LT1 functions: In this paper, we shall study a subclass of LT1 which we denote 
by IT1 . Each function f(X) = sgn(L:~=l Wi' Xi + wo) in IT1 is characterized by 
the property that the weights Wi are integers and bounded by a polynomial in n, 
i.e. IWil ~ n C for some constant c > O. 

Threshold Circuits: A threshold circuit [5, 10] is a Boolean network in which ---every gate computes an LT1 function. The size of a threshold circuit is the number - ---of LT1 elements in the circuit. Let LTk denote the class of threshold circuits of 
depth k with the size bounded by a polynomial in the number of inputs. We define 
LTk similarly except that we allow each gate in LTk to compute an LTI function. 

Although the definition of (LTd linear threshold function allows the weights to be 
real numbers, it is known [12] that we can replace each of the real weights by integers 
of O( n log n) bits, where n is the number of input Boolean variables. So in the rest 
of the paper, we shall assume without loss of generality that all weights are integers. 
However, this still allows the magnitudes of the weights to increase exponentially 
fast with the size of the inputs. It is natural to ask if this is necessary. In other 
words, is there a linear threshold function that must require exponentially large 
weights? Since there are 2n(n~) linear threshold functions in n variables [8, 14, 15], 
there exists at least one which requires O(n2 ) bits to specify the weights. By the 
pigeonhole principle, at least one weight of such a function must need O(n) bits, 
and thus is exponentially large in magnitude. i.e. 

-LTI ~ LT1 

The above result was proved in [9] using a different method by explicitly constructing -an LT1 function and proving that it is not in LT1 . In the following section, we 
shall show that the COMPARISON function (to be defined later) also requires 
exponentially large weights. We will refer to this function later on in the proof of 
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our main results. Main Results: The fact that we can simulate a linear threshold 
function with exponentially large weights in a 'constant' number oflayers of elements 
with 'small' weights follows from the results in [3] and [11]. Their results showed 
that the sum of n n-bit numbers is computable in a constant number of layers of 
'counting' gates, which in turn can be simulated by a constant number of layers of 
threshold elements with 'small' weights. However, it was not explicitly stated how 
many layers are needed in each step of their construction and direct application of 
their results would yield a constant such as 13. In this paper, we shall reduce the 
constant to 3 by giving a more 'depth'-efficient algorithm and by using harmonic 
analysis of Boolean functions [1,2,6]. We then generalize this result to higher depth 
circuits and show how to simulate a threshold circuit of depth-d and exponentially 
large weights in a depth-(2d + 1) threshold circuit of 'small' weights, i.e. LTd ~ 

fr2d+l. 
As another application of harmonic analysis, we also show that the 
COM P ARISON and ADDITION of two n-bit numbers is computable with only 
two layers of elements with 'small' weights, while it was only known to be com­
putable in 3 layers [5]. We also indicate how our 'depth'-efficient algorithm can be --applied to show that the product of two n-bit numbers can be computed in LT4 . 

In addition, we show that the MAXIMUM and SORTING ofn n-bit numbers 
can be computed in fr3 and LT4 , respectively. 

2 Main Results 

Definition: Let X = (Xl, ... , Xn), Y = (YI, ... , Yn) E {I, _l}n. We consider X 
and Y as two n-bit numbers representing E?=l Xi· 2' and E?=l Yi . 2i , respectively. 

The COMPARISON function is defined as 

C(X, Y) = 1 iff X ~ Y 

In other words, 
n 

C(X, Y) = sgn{L:: 2i(Xi - yd + I} 
i=l 

Lemma 1 -COMPARISON tt LTI 

On the other hand, using harmonic analysis [2], we can show the following: 

Lemma 2 

COMPARISON E m 
Spectral representation of Boolean functions: Recently, harmonic analysis 
has been found to be a powerful tool in studying the computational complexity of 
Boolean functions [1, 2, 7]. The idea is that every Boolean function f : {I, _1}n -+ 

{I, -I} can be represented as a polynomial over the field of rational numbers as 
follows: 

f(X) = L aaxa 
aE{O,l}n 
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h X a al al an were = x 1 x 2 .•. Xn • 

Such representation is unique and the coefficients of the polynomial, {aal Q E 
{a, l}n}, are called the spectral coefficients of f. 

We shall define the Ll spectral norm of f to be 

IIfll = ~ laal· 
ae{O,I}n 

The proof of Lemma 2 is based on the spectral techniques developed in [2]. Using 
probabilistic arguments, it was proved in [2] that if a Boolean function has Ll spec-

.-
tral norm which is polynomially bounded, then the function is computable in LT2 • 

We observe (together with Noga Alon) that the techniques in [2] can be generalized 
to show that any Boolean function with polynomially bounded Ll spectral norm 
can even be closely approximated by a sparse polynomial. This observation is crucial 
when we extend our result from a single element to networks of elements with large 
weights. 

Lemma 3 Let f(X) : {I, _l}n --+ {I, -I} such that IIfll ~ n C for some c. Then 
for any k > 0, there exists a sparse polynomial 

1 
F(X) = N 2:'.:: wa Xa such that 

aes 

IF(X) - f(X)1 ~ n- k , 

where Wa and N are integers, S c {O, l}n, the size of S, Wa and N are all bounded 
by a polynomial in n. Hence, f(X) E LT2 • 

As a consequence of this result, Lemma 2 follows since it can be shown that 
COM PARISON has a polynQmially bounded Ll spectral norm. 

Now we are ready to state our main results. Although most linear threshold func­
tions require exponentially large weights, we can always simulate them by 3 layers 
of in elements. 

Theorem 1 

-LTI ~ LT3 

The result stated in Theorem 1 implies that a depth-d threshold circuit with ex­
ponentially large weights can be simulated by a depth-3d threshold circuit with 
polynomially large weights. Using the result of Lemma 3, we can actually obtain a 
more depth-efficient simulation. 

Theorem 2 

As another consequence of Lemma 3, we have the following : 
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Corollary 1 Let /1 (X), ... , fm(X) be functions with polynomially bounded Ll spec-

tral norms, and g(/1 (X), ... , fm(X» be an fi\ function with fi(X) 's as inputs, 
I.e. 

m 

g(/1(X), ... , fm(X» = sgn(2: Wdi(X) + wo) 
i=l 

Then 9 can be expressed as a sign of a sparse polynomial in X with polynomially 
many number of monomial terms xcr 's and polynomially bounded integer coeffi----cients. Hence 9 E LT2. 

If all LTI functions have polynomially bounded Ll spectral norms, then it would 
follow that LTI C iT2 • However, even the simple MAJORITY function does not 
have a polynomially bounded Ll spectral norm. We shall prove this fact via the 
following theorem. (As in Lemma 3, by a sparse polynomial we mean a polynomial 
with only polynomially many monomial terms xcr's). 

Theorem 3 The iTl function MAJORITY: 
n 

sgn(2: X i) 
i=l 

cannot be approximated by a sparse polynomial with an error o( n -1). 

Other applications of the harmonic analysis techniques and the results of Lemma 3 
yields the following theorems: 

Theorem 4 

Let x, y be two n-bit numbers. Then 

ADDITION(x, y) E m 
---Theorem 5 The product of two n-bit integers can be computed in LT4 • 

---Theorem 6 The MAX I MU M of n n-bit numbers can be computed in LT3. 

Theorem 7 The SORTING ofn n-bit numbers can be computed in IT4 . 

3 Concluding Remarks 

Our main result indicates that for networks of linear threshold elements, we can 
trade-off arbitrary real weights with polynomially bounded integer weights, at the 
expense of a polynomial increase in the size and a factor of almost two in the depth of 
the network. The proofs of the results in this paper can be found in [13]. We would 
like to mention that our results have recently been improved by Goldmann, Hastad 
and Razborov [4]. They showed that any polynomial-size depth-d network oflinear 
threshold elements with arbitrary weights can be simulated by a polynomial-size 
depth-( d + 1) network with "small" (polynomially bounded integer) weights. While 
our construction can be made explicit, only the existence of the simulation result is 
proved in [4]; it is left as an open problem in [4] if there is an explicit construction 
of their results. 



Neural Computing with Small Weights 949 

Acknowledgements 

This work was done while Kai-Yeung Siu was a research student associate at IBM 
Almaden Research Center and was supported in part by the Joint Services Program 
at Stanford University (US Army, US Navy, US Air Force) under Contract DAAL03-
88-C-0011, and the Department of the Navy (NAVELEX), NASA Headquarters, 
Center for Aeronautics and Space Information Sciences under Grant NAGW-419-
S6. 

References 

[1] J. Bruck. Harmonic Analysis of Polynomial Threshold Functions. SIAM Jour­
nal on Discrete Mathematics, May 1990. 

[2] J. Bruck and R. Smolensky. Polynomial Threshold Functions, ACo Functions 
and Spectral Norms. Technical Report RJ 7140, IBM Research, November 
1989. Appeared in IEEE Symp. on Found. of Compo Sci. October, 1990. 

[3] A. K. Chandra, L. Stockmeyer, and U. Vishkin. Constant depth reducibility. 
Siam J. Comput . , 13:423-439, 1984. 

[4] M. Goldmann, J. Hastad, and A. Razborov Majority Gates vS. General 
Weighted Threshold Gates. Unpublished Manuscript. 

[5] A. HajnaI, W . Maass, P. PudIak, M. Szegedy, and G. Turan. Threshold circuits 
of bounded depth . IEEE Symp. Found. Compo Sci., 28:99-110, 1987. 

[6] R. J. Lechner. Harmonic analysis of switching functions. In A. Mukhopadhyay, 
editor, Recent Development in Switching Theory. Academic Press, 1971. 

[7] N. LiniaI, Y. Mansour, and N. Nisan. Constant Depth Circuits, Fourier Trans­
forms, and Learnability. Proc. 30th IEEE Symp. Found. Compo Sci., 1989. 

[8] S. Muroga and 1. Toda. Lower Bound of the Number of Threshold Functions. 
IEEE Trans. on Electronic Computers, EC 15, 1966. 

[9] J. Myhill and W. H. Kautz. On the Size of Weights Required for Linear-Input 
Switching Functions. IRE Trans. on Electronic Computers, EC 10, 1961. 

[10] I. Parberry and G. Schnitger. Parallel Computation with Threshold Functions 
. Journal of Computer and System Sciences, 36(3):278-302, 1988. 

[11] N. Pippenger. The complexity of computations by networks. IBM J. Res. 
Develop. , 31(2), March 1987. 

[12] P. Raghavan. Learning in Threshold Networks: A Computation Model and 
Applications. Technical Report RC 13859, IBM Research, July 1988. 

[13] K.-Y. Siu and J. Bruck. On the Power of Threshold Circuits with Small 
Weights. SIAM J. Discrete Math., 4(3):423-435, August 1991. 

[14] D. R. Smith. Bounds on the Number of Threshold Functions. IEEE Trans. on 
Electronic Computers, EC 15, 1966. 

[15] S. Yajima and T. Ibaraki. A Lower Bound on the Number of Threshold Func­
tions. IEEE Trans. on Electronic Computers, EC 14, 1965. 


