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Abstract 

This paper will address an important question in machine learning: What 
kind of network architectures work better on what kind of problems? A 
projection pursuit learning network has a very similar structure to a one 
hidden layer sigmoidal neural network. A general method based on a 
continuous version of projection pursuit regression is developed to show 
that projection pursuit regression works better on angular smooth func­
tions than on Laplacian smooth functions. There exists a ridge function 
approximation scheme to avoid the curse of dimensionality for approxi­
mating functions in L2(¢d). 

1 INTRODUCTION 

Projection pursuit is a nonparametric statistical technique to find "interesting" 
low dimensional projections of high dimensional data sets. It has been used for 
nonparametric fitting and other data-analytic purposes (Friedman and Stuetzle, 
1981, Huber, 1985). Approximation properties have been studied by Diaconis & 
Shahshahani (1984) and Donoho & Johnstone (1989). It was first introduced into 
the context of learning networks by Barron & Barron (1988). A one hidden layer 
sigmoidal feedforward neural network approximates f(x.) using the structure (Figure 
l(a)): 

n 

g(x.) = 'E a:jlT(pj 9J x. + llj) (1) 
j=l 
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(a) 
(b) 

Figure 1: (a) A One Hidden Layer Feedforward Neural Network. (b) A Projection 
Pursuit Learning Network. 

where iT is a sigmoidal function. 8; are direction parameters with 118;11 = I, and 
oj! P;, 6; are function parameters. A projection pursuit learning network based 
on projection pursuit regression (PPR) (Friedman and Stuetzle, 1981) or a ridge 
function approximation scheme (RA) has a very similar structure (Figure l(b». 

" 
g(x) = Lg;(8Jx) (2) 

;=1 

where 8; are also direction parameters with 118;11 = 1. The corresponding function 
parameters are ridge functions 9; which are any smooth function to be learned 
from the data. Since iT is replaced by a more general smooth function gj, projection 
pursuit learning networks can be viewed as a generalization of one hidden layer 
sigmoidal feedforward neural networks. This paper will discuss some approximation 
properties of PPR: 

1. Projection pursuit learning networks work better on angular smooth functions 
than on Laplacian smooth functions. Here "work better" means that for fixed 
complexities of hidden unit functions and a certain accuracy, fewer hidden units 
are required. For the two dimensional case (d = 2), Donoho and Johnstone 
(1989) show this result using equispaced directions. The equispaced directions 
may not be available when d > 2. We use a set of directions generated from 
zeros of orthogonal polynomials and uniformly distributed directions on an unit 
sphere instead. The analysis method in D "J's paper is limited to two dimen­
sions. We apply the theory of spherical harmonics (Muller, 1966) to develop a 
continuous ridge function representation of any arbitray smooth functions and 
then employ different numerical integration sehemes to discretize it for eases 
when d> 2. 

2. The curse of dimensionality can be avoided when a proper ridge function ap­
proximation is applied. Once a continuous ridge function representation is es­
tablished for any function in L2(4)41), a Monte Carlo type of integration scheme 
can be applied which has a RMS error convergence rate O(N-i) where N is 
the number of ridge functions in the linear combinations. This is a similar 
result to Barron's result (Barron, 1991) except that we have less restrictions 
on the underlying function class. 
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(a) (b) 

Figule 2: (a> A radial basil element 1014' (b) a harmonic basis element 1110. 

2 SMOOTHNESS CLASSES AND A L'( tPd) BASIS 

We use L2(4),.) u our underlying function space with Gaussian meuure 4>4 = 
II I~IJ 

(2~)ye- . 11/112 = JR. P4>4dx. The smoothness classes characterise the rates of 
convergence. Let A4 be the Laplacian operator and A4 be the Laplacian-Beltrami 
operator (Muller, 1966). The smoothness classes can be defined u: 

Definition 1 The function 1 E L2(4)4) will be .aid to have Cartuian .moo#Jane .. 
01 order p i/ it hal p derivativu and thue derivativu are all in L2(<1>4) , It will 
be .aid to have angular .moo#Jane .. 0/ order q i/ A~f 1 E L 2(<1>4) ' It will be .aid 
to have Laplacian .moo#Jane .. 0/ order 7' i/ A41 E L2(4)4)' Let;:, be the cia .. 0/ 
function. with Cartuian .moothneu P, A,f be #Jae cia .. 01 function. with Cartuian 
.moothne .. p and angular .moo#Jane .. q and c,~ be the cla.. 0/ function. with 
Cartuian .moothne .. p and Laplacian .moo#Jane .. 7', 

We derive an orthogonal basis in L2(<1>4) from the eigenfunctions of a self-adjoint 
operator, The basis element is defined as: 

(3) 

where x = 7'e, n = 0, ",,00, m = 0, "" 00, j = I, "" N(d, n),1'm = (_2)mm!, (t = 
n + 422. S"i(e) are linearly independent spherical harmonies of degree n in d 

dimensions (Muller, 1966), L!C;) is a Laguerre polynomial. The advantage of 
the basis comes from its representation u a product of a spherical harmonic and 
a radial polynomial. Specifically JOjm is a radial polynomial for n = 0 and J"jO 
is a harmonic polynomial for m = O. Figure 2(a),(b) show a radial buis element 
and a harmonic basis element when n + 2m = 8. The basis element J"jm has an 
orthogonality: 

where E denotes expectation with respect to <1>4' Since it is a basis in L2 (<1>4), any 
function / E L2(<1>4) hu an expansion in terms of basis elements J"jm 

1 = L ~imJ";m (5) 
".j,m 
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The circular harmonic einB is a special case of the spherical harmonic Snj (e). In two 
dimensions, d = 2, N(d,n) = 2 and x = (rcos8,rsin8). The spherical harmonic 
Snj(e) can be reduced to the following: Snl(e) = 7: cos n8, Sn2(e) = '* sin n8, 
which is the circular harmonic. 

Smoothness classes can also be defined qualitatively from expansions of functions 
in terms of basis elements Jnjm. Since 111112 = 2:c!jmJ~jm' one can think of 

Pnjm(J) = E!i2.,.J!i'; as representing the distribution of energy in 1 among the 
c .. i.,.J .. ; ... 

different modes of oscillation Jnjm . If 1 is cartesian smooth, Pnjm(J) peaks around 
small n + 2m. If 1 is angular smooth, Pnjm (J) peaks around small n. If 1 is 
Laplacian smooth, Pnjm (I) peaks around small m. To explain why PPR works 
better on angular smooth functions than on Laplacian smooth functions, we first 
examine how to represent these L2(¢d) basis elements systematically in terms of 
ridge functions and then use the expansion (5) to derive a error bound of RA for 
general smooth functions. 

3 CONTINUOUS RIDGE FUNCTION SCHEMES 

There exists a continuous ridge function representation for any function I(x) E 
L 2(¢d) which is an integral of ridge functions through all possible directions. 

I(x) = 1 g(xT TJ, TJ)dwd(TJ)· (6) 
n~ 

This works intuitively because any object is determined by any infinite set of radio­
graphs. More precisely, any function I(x) E L 2(¢d) can be approximated arbitrarily 
well by a linear combination of ridge functions 2:k g(xT TJk, TJk) provided infinitely 
many combination units (Jones, 1987). As k --+ 00, we have (6). The natural 
discrete approximation to (6) has the form: In(x) = 2:'1=1 Wjg(xTTJj,TJj), which 
becomes the usual PPR (2). We proved a continuous ridge function representation 
of basis elements Jnjm which is shown in Lemma 1. 

Lenuna 1 The continuou6 ridge function repre6entation of Jnjm i6: 

Jnjm(x) = Anmd 1 Hn+2m (TJT x)Snj(TJ)dWd(TJ) 
n~ 

(7) 

where Anmd i6 a con6tant and Hn+2m (:l) i6 a Hermite polynomial. 

Therefore any function 1 E L 2(¢d) has a continuous ridge function representation 
(6) with 

g(xT TJ,7J) = L Cnjm AnmdHn+2m(XT 7J)Snj(7J) (8) 
Gaussian quadrature and Monte Carlo integration schemes can be used to discretize 
(6). 

4 GAUSSIAN QUADRATURE 

Since Jn~ g(xT TJ, TJ)dwd(TJ) = Jn~_1 J~l g(xT TJ, TJ)(1 - t~_d ~;3 dtd_ldwd_l (TJd-d, 
simple product rules using Gaussian quadrature formulae can be used here. tij, i = 
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(a) 
(b) 

Figure 3: Directions (a) for a radial polynomial (b) for a hatmonic polynomial 

d -1, ... , 1, j = 1, ... , ft are lerGI of orthogonal polynomials with weight. (1 - t 2)¥. 
N = ,,4-1 points on the unit .phere {}4 can be formed using tii through 

[ 
"/1- tLI 00. y1-if 1 

,,= Jl- tLI· .. tl 

t4_1 

(9) 

If g( r ", ,,) is a polynomial of degree at mo.t 2" - 1 (in term. of t1 , ... , t4- il, then 
N = ,,4-1 point! (direction.) ate .ufficient to represent the integral exactly. This 
can be demonstrated with two eX&lllples by taking d = 3. 

Example 1: a radial function 

24 + 114 + %4 + 222112 + 222%2 + 2112%2 = Cl I (xT ,,)4dwa('1) (10) In. 
d = 3." = 3. ,,2 = 9 direction. from (9) are sufficient to represent this poly­

nomial with tl = 0, /i, -/i (Ieros of a degree 3 Legendre polynomial) and 

tl = 0, llj. -~ ( .eros of a degree 3 Tschebyscheff polynomial). More directions 
ate needed to represent a hatmonic function with exactly the same number of ternu 
of monomials but with different coefficient •. 

EX&IIlpie 2: a hat monic function 

i(824 + 3114 + 3%4 - 2422112 - 2422%2 + 6~%2) = C2 L. (r,,)4S.i (,,)dwa(,,) (11) 

where S4/(") = i(35t4 - 30tl + 3)." = t€a + v'f=1J'h' ,,= 5, ,,2 = 
25 direction. from (9) ate sufficient to represent the polynomial with t2 = 
0,0.90618, -0.90618, 0.53847, -0.53847 and tl = COl 2{;1 ~,j = I, ... , 5. The dis­
tribution of these directioDJ on a unit .phere ate shown in Figure 3(a) and (b). 
In general, N = (ft + m + 1)4-1 direction. ate sufficient to represent J"im exactly 
by using leros of orthogonal polynomial.. If p = ,,+ 2m (the degree of the basis) 
i. fixed, N = (p - m + 1)4-1 = (~ + 1)4-1 is minimiled when" = 0 which 
corresponds to the radial basis element. N is maximiled when m = 0 which is the 
hat monic element. Using definition. of .moothnes. dassel in Section 2. We can 
show that ridge function approximation works better on angular smooth functions. 
The basic result i. as follow.: 
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Theorem liE .A"f' let RN 1 denote a .um 01 ridge Junction. which belt approz­
imate f by tI.ing a .et of direction. generated by zero. of orthogonal polynomial •. 
Then 

(12) 

This error bound says that ridge function approximation does take advantage of 
angular smoothness. Radial functions are the most angular smooth functions with 
q = +00 and harmonic functions are the least angular smooth functions when the 
Cartesian smoothness p is fixed. Therefore ridge function approximation works 
better on angular smooth functions than on Laplacian smooth functions. Radial 
and harmonic functions are the two extreme cases. 

5 UNIFORMLY DISTRIBUTED DIRECTIONS ON nd 
Instead of using directions from zeros of orthogonal polynomials, N uniformly dis­
tributed directions on nd is an alternative to generalizing equispaced directions. 
This is a Monte Carlo type of integration scheme on Oct. 

To approximate the integral (7), N uniformly distributed directions 1/1, 112, ...... , TJN 
on nd drawn from the density I(TJ) = l/wct on Od are used: 

N 

Jnjm(x) = ';; Anmd L Hn+2m (XT TJIe)Snj(TJIe) 
Ie=l 

(13) 

(14) 

The variance is 
u2 (x) 

u1(x) = -- (15) 
N 

where u2 (x) = In. [AnmdWdHn+2m(XTTJ)Snj(TJ) - Jnjm(X)] 2 ..,l.dwd(TJ). Therefore 

Jnjm(X) approximates Jnjm(x) with a rate u(x)/VN. The difference between a 
radial basis and a harmonic basis is u(x). Let us average u(x) with respect to ¢d: 

Ilu(x)112 = IIJnjmll2 [ri~~;~:d 1) - 1] = IIJnjmll2anjm (16) 

For a fixed n + 2m = p, Ilu(x)112 is minimized at n = 0 (a radial element) and 
maximized at m = 0 (a harmonic element). 

The same justification can be done for a general function 1 E L2( ¢d) with (6) and 
(8). A RA scheme is: 
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mN(x) = I(x), O';;(x) = (T2kX) , 0'2(x) = fOil wdg2(xT TJ, TJ)dwct(TJ) - 12(x) and 

110'(x)1I2 = L c!jmIIJnjmWanjm' Since anjm is small when n is small, large when m 
is small and recall the distribution Pnjm(J) in Section 3, 110'112/11/112 is small when 
I is smooth. Among these smooth functions, if I is angular smooth, 110'112/11/112 
is smaller than that if I is Laplacian smooth. The RMS error convergence rate 

IIli",1I = ,,)I~J:v is consequently smaller for I being angular smooth than for I being 

Laplacian smooth. But both rates are D( N-i) no matter what class the underlying 
fundion belongs to. The difference is the constant which is related to the distribu­
tion of energy in I among the different modes of oscillations (angular or Laplacian). 
The radial and harmonic functions are two extremes. 

6 THE CURSE OF DIMENSIONALITY IN RA 

Generally, if N directions TJ1, 1/2, ...... , TJN, on Od drawn from any distribution p(TJ) 
on the sphere Od to approximate (6) 

I(x) = ~ t 9(XTTJ1c ,TJ1c» (17) 
N 1c=1 p( TJ1c) 

mN = lex) IT;; = C;; where 0'2(x) = fOil p(~)g2(xTTJ,TJ)dwd(TJ) - 12(x). And 

111T(x)112 = I _(1) IIgl1I1 2dwd(TJ) -11/112 = c/ (18) lOll P TJ 

Then 

(19) 

That is, I(x) --+ lex) with a rate D(N-~). Equation (19) shows that there is no 
curse of dimensionality if a ridge function approximation scheme (17) is used for 
lex). The same conclusion can be drawn when sigmoidal hidden unit function neu­
ral networks are applied to Barron's class of underlying function (Barron, 1991). 
But our function class here is the function class that can be represented by a con­
tinuous ridge function (6), which is a much larger function class than Barron's. Any 
function I E L 2(¢d) has a representation (6)(Section 4). Therefore, for any func­
tion I E L2( ¢d), there exists a node function g(xT TJ, TJ) and related ridge function 
approximation scheme (17) to approximate lex) with a rate D(N-i), which has no 
curse of dimensionality. In other words, if we are allowed to choose a node function 
g(xT TJ, TJ) according to the property of data, which is the characteristic ofPPR, then 
ridge function approximation scheme can avoid the curse of dimensionality. That 
is a generalization of Barron's result that the curse of dimensionality goes away if 
certain types of node function (e.g., CO$ and 0') are considered. 

The smoothness of a underlying function determines the size of the constant Ct. As 
shown in the previous section, ifp(TJ) = l/wd (i.e., uniformly distributed directions), 
then angular smooth functions have smaller c/ than Laplacian smooth functions do. 
Choosing different p( TJ) does not change this conclusion. But a properly chosen p( TJ) 
reduces c, in general. If I(x) is smooth enough, the node function g(xT TJ, TJ) can be 
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computed from the Radon transform R"f of f in the direction 1] which is defined 
as 

(20) 

and we proved: g(xT1],1]) = F-1(Fl1(t)ltld-1) It=X'l'l1, where Fl1(t) is the Fourier 
transform of R"f(') and F- 1 denotes the inverse Fourier transform. In practice, 
learning g(xT 11,11) is usually replaced by a smoothing step which seeks a one di­
mensional function to fit x T 1] best to the residual in this direction (Friedman and 
Stuetzle, 1981, Zhao and Atkeson, 1991). 

7 CONCLUSION 

As we showed, PPR works better on angular smooth function than on Laplacian 
smooth functions by discretizing a continuous ridge function representation. PPR 
can avoid the curse of dimensionality by learning node functions from data. 

Acknowledgments 

Support was provided under Air Force Office of Scientific Research grant AFOSR-
89-0500. Support for CGA was provided by a National Science Foundation Presi­
dential Young Investigator Award, an Alfred P. Sloan Research Fellowship, and the 
W. M. Keck Foundation Associate Professorship in Biomedical Engineering. Spe­
cial thanks goes to Prof. Zhengfang Zhou and Prof. Peter Huber at Math Dept. in 
MIT, who provided useful discussions. 

References 

Barron, A. R. and Barron, R. L. (1988) "Statistical Learning Networks: A 
Unifying View." Computing Science and Stati6tic6: Proceeding6 of 20th Symp06ium 
on the Interface. Ed Wegman, editor, Amer. Statist. Assoc., Washington, D. C., 
192-203. 
Barron, A. R. (1991) "Universal Approximation Bounds for Superpositions of 
A Sigmoidal Function". TR. 58. Dept. of Stat., Univ. of nlinois at Urbana­
Champaign. 
Donoho, D. L. and Johnstone, I. (1989). "Projection-based Approximation, 
and Duality with Kernel Methods". Ann. Statid., 17, 58-106. 
Diaconis, P. and Shahshahani, M. (1984) "On Non-linear Functions of Linear 
Combinations", SIAM J. Sci. Stat. Compt. 5, 175-191. 
Friedman, J. H. and Stuetzle, W. (1981) "Projection Pursuit Regression". J. 
Amer. Stat. Auoc., 76, 817-823. 
Huber, P. J. (1985) "Projection Pursuit (with discussion)", Ann. Stati6t., 19, 
495-4 75. 
Jones, L. (1987) "On A Conjecture of Huber Concerning the Convergence of Pro-
jection Pursuit Regression". Ann. Statid., 15, 880-882. 
Muller, C. (1966), Spherical Harmonic,. Lecture Notes in Mathematics, no.17. 
Zhao, Y. and C. G. Atkeson (1991) "Projection Pursuit Learning", Proc. 
IJCNN-91-SEATTLE. 


