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Abstract 

Winner-Take-All (WTA) networks. in which inhibitory interconnec­
tions are used to determine the most highly-activated of a pool of unilS. 
are an important part of many neural network models. Unfortunately, 
convergence of normal WT A networks is extremely sensitive to the 
magnitudes of their weights, which must be hand-tuned and which gen­
erally only provide the right amount of inhibition across a relatively 
small range of initial conditions. This paper presents Dynamjcally­
Adaptive Winner-Telke-All (DA WTA) netw<rls, which use a regulatory 
unit to provide the competitive inhibition to the units in the network. 
The DA WT A regulatory unit dynamically adjusts its level of activation 
during competition to provide the right amount of inhibition to differ­
entiate between competitors and drive a single winner. This dynamic 
adaptation allows DA WT A networks to perform the winner-lake-all 
function for nearly any network size or initial condition. using O(N) 
connections. In addition, the DA WT A regulaaory unit can be biased 10 
find the level of inhibition necessary to settle upon the K most highly­
activated units, and therefore serve as a K -Winners-Take-All network. 

1. INTRODUCTION 

Winner-Take-All networks are fixed group of units which compete by mutual inhibition 
until the unit with the highest initial activation or input level suppresses the activation of 
all the others. Winner-lake-all selection of the most highJy-activated unit is an important 
part of many neural network models (e.g. McCleUand and Rumelhart, 1981; Feldman and 
Ballard. 1982; Kohonen. 1984; Tomelzky. 1989; Lange and Dyer, 1989a,b). 

Unfortunately, successful convergence in winner-lake-all networks is extremely sensitive 
to the magnitudes of the inhibitory weights between units and other network parameU7S. 
For example. a weight value for the mutually-inhibitory connections allowing the most 
highly-activated unit to suppress the other units in one initial condition (e.g. Figure la) 
may not provide enough inhibition to select a single winner if the initial input activation 
levels are closer together and/or higher (e.g. Figure Ib). On the other hand, if the compe-
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Figure 1. Several plots of activation versus time for different initial condi­
tions in a winner-lake-all network in which there is a bidirectional inhibitory 
connection of weight -0.2 between every pair of units. Unit activation function 
is that from the interactive activation model of McClelland and Rumelhan 
(1981). (a) Network in which five units are given an input self bias ranging 
from 0.10 to 0.14. (b) Network in which five units are given an input self bias 
ranging from 0.50 to 0.54. Note that the network ended up with three winners 
because the inhibitory connections of weight -0.2 did not provide enough inhibi­
tion to suppress the second and third most-active nodes. (c) Network in which 
100 units are given an input self bias ranging from 0.01 to 0.14. The combined 
activation of all 100 nodes through the inhibitory weight of -0.2 provides far too 
much inhibition. causing the network to overreact and oscillate wildly 
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tition involves a larger number of active units. then the same inhibitory weights may 
provide too much inhibition and either suppress the activations of all units or lead to 
oscillations (e.g. Figure Ie). 
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Because of these problems, it is genenlly necessary to hand-tune network paramderS to 
allow for successful winner-lake-all performance in a given neuraI network archilleCture 
having certain expected levels of incoming activations. For complex networks. this can 
require a detailed mathematical analysis of the model (cf. Touretzky & Hinton, 1988) ex' a 
heuristic, computer-assisted trial-and-error search process (cf. Reggia, 1989) to find the 
values of inhibitory weights, unit thresholds, and other network parameters necessary for 
clear-cut winner-lake-all performance in a given model's input space. In some cases. 
however, no set of network constant network parameters can be found to handle the range 
of possible initial conditions a model may be faced with (Bamden. Kankanaballi. and 
Dharmavaratha. 1990). such as when the numbers of units actually competing in a given 
network may be two at one time and thousands at another (e.g. Bamden, 1990; Lange, in 
press). 

This paper presents a new variant of winnet-take-all networks. the Dynamically-Adaptive 
Winner-Take-All (DAWfA) network. DAWTA networks. using O(N) connectioas. are 
able to robustly act as winner-lake-all networks for nearly any network initial condition 
without any hand-tuning of network parameters. In essence, the DA WT A network dy­
namically "tunes" itself by adjusting the level of inhibition sent to each unit in the net­
work depending upon feedback from the current conditions of the competition. In addi­
tion. a biasing activation can be added to the network to allow it to act as a K-Winners­
Take-All network (cf. Majani, Erlanson. and Abu-Mostafa, 1989). in which the K most 
highly-activated units end up active. 

2. DYNAMICALL Y -ADAPTIVE WT A NETWORKS 

The basic idea behind the Dynamically-Adaptive Winner-Take-All mechanism can be de­
scribed by looking at a version of a winner-lake-all network that is functionally equivalent 
to a nonnal winner-lake-all network but which uses only O(N) connections. Several re­
searchers have pointed out that the (N2_N)(l. bidirectional inhibitory connections (each of 
weight -WI) normally needed in a winner-lake-all network can be replaced by an excitatory 
self-connection of weight WI for each unit and a single regulatory unit that sums up the 
activations of all N units and inhibits them each by that -WI times that amount 
(fouretzky & Hinton. 1988: Majani et al.. 1989) (see Figure 2). 

When viewed in this fashion, the mutually inhibitory connections of winner-lake-all net­
works can be seen as a regulator (i.e. the regulatory unit) that is attempting to IYOvide the 
right amount of inhibition to the network to allow the winner-to-be unit's activation to 
grow while suppressing the activations of all others. This is exactly what happens when 
WI has been chosen correctly for the activations of the network (as in Figure la). 
However, because the amounl of this regulatory inhibition is fixed precisely by that in­
hibitory weight (i.e. always equal to that weight times the sum of the network activa­
tions), there is no way for it to increase when it is not enough (as in Figure Ib) or de­
crease when it is too much (as in Figure lc). 

2.1. THE DA WTA REGULATORY UNIT 

From the point of view of the competing units' inputs. the Dynamically-Adaptive 
Winner-Take-All network is equivalenl to the regulatory-unit simplification of a nonnal 
winner-take-all network. Each unit has an excitatory connection to itself and an in­
hibitory connection from a regulatory unit whose function is to suppress the activations 
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Figure 2. Simplification of a standard WTA network using O(n) connectiOllS 
by introduction of a regulatory unit (top node) that sums up the activations of all 
network units. Each unit has an excitatory connection to itself and an inhibitay 
connection of weight -WI from the regulatory unit Shading of units (darker = 
higher) represents their levels of activation at a hypothetical time in the middle 
of network cycling. 

of all but the winning unitl. However, the regulatory unit itself, and how it calculates 
the inhibition it provides to the network, is different 

Whereas the connections to the regulatory unit in a nonnal winner-lake-all network cause 
it to produce an inhibitory activation (i.e. the sum of the units' activations) that happens 
to work if its inhibitory weights were set correctly, the structure of connections to the 
regulatory unit in a dynamically-adaptive winner-lake-all network cause it to continually 
adjust its level of activation until the right amount of inhibition is found, regardless of 
the network's initial conditions. As the network cycles and the winner-lake-all is being 
perfonned, the DA WT A regulatory unit's activation inhibits the networks' units, which 
results in feedback to the regulatory unit that causes it to increase its activation if more 
inhibition is required to induce a single winner, or decrease its activation if less is re­
quired. Accordingly, the DAWTA regulatory unit's activation (aR(t) now includes its 
previous activation, and is the following: 

netR(t+l) S -8 
-8 < net R ( t + 1 ) < 8 

netR(t+l) ~ 8 

where netR (t+l) is the total net input to the regulator at time 1+1. and 8 is a small 
constant (typically 0.05) whose purpose is to stop the regulatory unit's activation from 
rising or falling too rapidly on any given cycle. Figure 3 shows the actual Dynamically­
Adaptive Winner-Take-All network. As in Figure 2, the regulatory unit is the unit at the 
top and the competing units are the the circular units at the bottom that are inhibited by it 
and which have connections (of weight ws) to themselves. However, there are now two 

1 As in all winner-lake-all networks, the competing units may also have inputs from 
outside the network that provide the initial activations driving the competition. 
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Figure 3. Dynamically-Adaptive Winnez-Take-All Network at a hypothetical 
time in the middle of network cycling. The topmost unit is the DA WT A 
regulatory unit. whose outgoing coonections to all of me competing units II abe 
bottom all have weight -1. The input -A:-wd is a constant self biasing activation 
to the regulatory unit whose value determines how many winners it will try to 
drive. The two middle units are simple linear summation units each having 
inputs of unit weight that calculate the total activation of the competing units at 
time I and time I-I, respectively. 

intennediate units that calculate the net inputs that increase or decrease the regulatory 
unit's inhibitory activation depending on the state of the competition. These inputs cause 
the regulatory unit to receive a net input netR (t+l) of: 

which simplifies to: 

netR(i+I) = Wt{o,(t-l) - k) + wio,(t-l) - o,{t-2» 

where Ol(t) is the total summed output of all of the competing units (calculated by the 
intennediate units shown), W, and Wd are constant weights, and k is the number of 
winners the network is attempting to seek (1 to perfonn a nonnal winner-lake-all). 

The effect of the above activation function and the connections shown in Figure 3 is to 
apply two different activation pressures on the regulatory unit. each of which combined 
over time drive the DA WTA regulatory unit's activation to find the right level of 
inhibition to suppress all but the winning uniL The most important pressure, and the 
key to the DA WT A regulatory unit's success, is that the regulatory unit's activation 
increases by a factor of W, if there is too much activation in the network, and decreases by 
a corresponding factor if there is not enough activation in the network. This is the result 
of the tenn w,(o,(I-I) - k) in its net input function, which simplifies to w,(o,(t-I) - 1) 
when k equals 1. The "right amount" of total activation in the network is simply the 
total summed activation of the goal state, i.e. the winner-lake-all network state in which 
there is one active unit (having activation I) and in which all other competing units have 
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been driven down to an activation of 0, leaving the IDtal network activation 01..1) equal to 
1. The factor w,(o,(t-l) - 1) of the regulaWry input's net input will therefore laid to 
increase the regulatory unit's activation if there are too many units active in abc network 
(e.g. if there are three units with activity 0.7, 0.5, and 0.3, since the total outpUt 0,(1) 
will be 1.5), to decrease its activation if there is not enough totally active units in the 
network (e.g. one unit with activation 0.2 and the rest with activation O.O), and to leave 
its activation unchanged if the activation is the same as the fmal goal activation. Noce 
that any temporary coincidences in which the total network activation sums to 1 but 
which is not the fmal winner-lake-all state (e.g. when one unit has activation 0.6 and 
another has activation 0.4) will be broken by the competing units lhemselves. since the 
winning unit's activation will always rise more quickly thaD the loser's just by ill own 
activation function (e.g. that of McClelland and Rumelhart, 1981). 

The other pressure on Ihe DAWTA regulatory unit. from the wct<o/..t-l) - 0I..t-2» tam of 
netR(t+ I), is to tend to decrease the regulator's activation if the overall network activation 
is falling too rapidly, or to increase it if the overall network activation is rising too 
rapidly. This is essentially a dampening term to avoid oscillaIions in the network in the 
early stages of the winner-lake-all, in which there may be many active units whose activa­
tions are falling rapidly (due inhibition from the regulatory unit), but in which Ihe total 
network activation is still above the final goal activation. As can be seen, this second 
term of the regulatory unit's net input will also sum to 0 and therefore leave the regula­
tory unit's activation unchanged when the goal state of the network has been reached, 
since the total activation of the network in the winner-take-all state will remain constanl 

All of the weights and connections of the D A WT A network are constant parameters that 
are the same for any size network or set of initial network conditions. Typically we have 
used W, = 0.025 and Wd = 0.5. The actual values are not critical, as long as Wd »Ws. 
which assures that Wd is high enough to dampen the rapid rise or fall in total network 
activation sometimes caused by the direct pressure of Wt. The value of the regulatory 
unit's self bias term !W, that sets the goal total network activation that the regulatory 
unit attempts to reach is simply detennined simply by Ie, the number of winnas desired 
(1 for a normal winner-lake-all network), and W,. 

3. RESULTS 

Dynamically-adaptive winner-lake-all networks have been tested in the DESCARTES con­
nectionist simulator (Lange, 1990) and used in our connectionist model of short-tenn se­
quential memory (Lange, in press). Figures 4a-c show the plots of activation vasus time 
in networks given the same initial conditions as those of the normal winner-lake-all net­
work shown in Figures la-c. Note that in each case the regulatory unit's activation 
starts off at zero and increases until il reaches a level that provides sufficient inhibition to 
stan driving the winner-lake-all. So whereas the inhibitory weights of -0.2 that worked 
for inputs ranging from 0.10 to 0.14 in the winner-lake-all network in FigUle la could 
not provide enough inhibition to drive a single winner when the inputs were ovez 0.5 
(Figure 1 b). the DA WT A regulatory unit simply increases its activation level until the 
inhibition it provides is sufficient 10 start suppressing the eventual losers (Figures 4a and 
4b). As can also be seen in the figures, the activation of the regulatory unit tends to vary 
over time with different feedback from the network in a process that maximizes 
differentiation between units while assuring that the group of remaining potential winnas 
stays active and are nOl over-inhibited. 
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Figure 4. Plots of activation versus time in a dynamically-adaptive winner­
take-all network given the same activation functions and initial conditions of the 
winner-take-all plots in Figure 1. The grey background plot shows the 
activation level of the regulatory uniL (a) With five units activated with self­
biases from 0.10 to 0.14. (b) With five units activated with self-biases from 
0.50 to 0.54. (c) With 100 units activated with self-biases from 0.01 to 0.14 

Finally, though there is not space to show the graphic results here, the same DAWTA 
netwex-ks have been simulated to drive a successful winnez-take-all within 200 cycles on 
networks ranging in size from 2 to 10,000 units and on initial conditions where the win­
ning unit has an input of 0.000001 to initial conditions where the winning unit has an 
input of 0.999, without tuning the network in any way. The same networks have also 
been successfully simulated to act as K-wiMer-take-alJ networks (i.e. to select the K most 
active units) by simply setting the desired value for Ie in the DA WT A's self bias term 

kwd· 
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4. CONCLUSIONS 

We have presented Dynamically-Adaptive Winner-Taite-All netwcdcs. which UIC O(N) 
connections to perform the winner-take-all function. Unlike noonaI winner-lake-all net­
works, DA WT A networks are able to select the most highly-activated unit out of. group 
of units for nearly any network size and initial condition witbout lUning any network pa­
rameters. They are able to do so because the inhibition that drives the winner-taite-all 
network is provided by a regulatory-unit that is constantly getting feedback from the state 
of the network and dynamically adjusting its level to provide the right amount of inhibi­
tion to differentiate the winning unit from the losers. An important side-feature of this 
dynamically-adaptive inhibition approach is that it can be biased to select the K most 
highly-activated units, and therefore laVe as a K-winnas-take-all netw<rt. 
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