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Abstract 

Visual object recognition involves the identification of images of 3-D ob­
jects seen from arbitrary viewpoints. We suggest an approach to object 
recognition in which a view is represented as a collection of points given 
by their location in the image. An object is modeled by a set of 2-D views 
together with the correspondence between the views. We show that any 
novel view of the object can be expressed as a linear combination of the 
stored views. Consequently, we build a linear operator that distinguishes 
between views of a specific object and views of other objects. This opera­
tor can be implemented using neural network architectures with relatively 
simple structures. 

1 Introduction 

Visual object recognition involves the identification of images of 3-D objects seen 
from arbitrary viewpoints. In particular, objects often appear in images from previ­
ously unseen viewpoints. In this paper we suggest an approach to object recognition 
in which rigid objects are recognized from arbitrary viewpoint. The method can be 
implemented using neural network architectures with relatively simple structures. 

In our approach a view is represented as a collection of points given by their loca­
tion in the image, An object is modeled by a small set of views together with the 
correspondence between these views. We show that any novel view of the object 
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can be expressed as a linear combination of the stored views. Consequently, we 
build a linear operator that distinguishes views of a specific object from views of 
other objects. This operator can be implemented by a neural network. 

The method has several advantages. First, it handles correctly rigid objects, but is 
not restricted to such objects. Second, there is no need in this scheme to explicitly 
recover and represent the 3-D structure of objects. Third, the computations involved 
are often simpler than in previous schemes. 

2 Previous Approaches 

Object recognition involves a comparison of a viewed image against object models 
stored in memory. Many existing schemes to object recognition accomplish this task 
by performing a template comparison between the image and each of the models, 
often after compensating for certain variations due to the different positions and 
orientations in which the object is observed. Such an approach is called alignment 
(Ullman, 1989), and a similar approach is used in (Fischler &, Bolles 1981, Lowe 
1985, Faugeras &, Hebert 1986, Chien &, Aggarwal 1987, Huttenlocher &, Ullman 
1987, Thompson &, Mundy 1987). 

The majority of alignment schemes use object-centered representations to model the 
objects. In these models the 3-D structure of the objects is explicitly represented. 
The acquisition of models in these schemes therefore requires a separate process to 
recover the 3-D structure of the objects. 

A number of recent studies use 2-D viewer-centered representations for object recog­
nition. Abu-Mostafa &, Pslatis (1987), for instance, developed a neural network that 
continuously collects and stores the observed views of objects. When a new view 
is observed it is recognized if it is sufficiently similar to one of the previously seen 
views. The system is very limited in its ability to recognize objects from novel 
views. It does not use information available from a collection of object views to 
extend the range of recognizable views beyond the range determined by each of the 
stored views separately. 

In the scheme below we suggest a different kind of viewer-centered representations 
to model the objects. An object is modeled by a set of its observed images with the 
correspondence between points in the images. We show that only a small number 
of images is required to predict the appearance of the object from all possible 
viewpoints. These predictions are exact for rigid objects, but are not confined to 
such objects. We also suggest a neural network to implement the scheme. 

A similar representation was recently used by Poggio &, Edelman (1990) to develop a 
network that recognizes objects using radial basis functions (RBFs). The approach 
presented here has several advantages over this approach. First, by using the linear 
combinations of the stored views rather than applying radial basis functions to 
them we obtain exact predictions for the novel appearances of objects rather than 
an approximation. Moreover, a smaller number of views is required in our scheme to 
predict the appearance of objects from all possible views. For example, when a rigid 
object that does not introduce self occlusion (such as a wired object) is considered, 
predicting its appearance from all possible views requires only three views under 
the LC Scheme and about sixty views under the RBFs Scheme. 
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3 The Linear Combinations (LC) Scheme 

In this section we introduce the Linear Combinations (LC) Scheme. Additional 
details about the scheme can be found in (Ullman & Basri, 1991). Our approach is 
based on the following observation. For many continuous transformations of interest 
in recognition, such as 3-D rotation, translation, and scaling, every possible view 
of a transforming object can be expressed as a linear combination of other views of 
the object. In other words, the set of possible images of an object undergoing rigid 
3-D transformations and scaling is embedded in a linear space, spanned by a small 
number of 2-D images. 

We start by showing that any image of an object undergoing rigid transformations 
followed by an orthographic projection can be expressed as a linear combination of 
a small number of views. The coefficients of this combination may differ for the x­
and y-coordinates. That is, the intermediate view of the object may be given by two 
linear combinations, one for the x-coordinates and the other for the y-coordinates. 
In addition, certain functional restrictions may hold among the different coefficients. 

We represent an image by two coordinate vectors, one contains the x-values of the 
object's points, and the other contains their y-values. In other words, an image P 
is described by x = (XlJ ... , xn) and y = (Yll ... , Yn) where every (Xi, Yi), 1 < i ~ n, 
is an image point. The order of the points in these vectors is preserved in all the 
different views of the same object, namely, if P and pI are two views of the same 
object, then (Xi, Yi) E P and (x~, yD E pI are in correspondence (or, in other words, 
they are the projections of the same object point). 

Claim: The set of coordinate vectors of an object obtained from all different 
viewpoints is embedded in a 4-D linear space. 
(A proof is given in Appendix A.) 

Following this claim we can represent the entire space of views of an object by a 
basis that consists of any four linearly independent vectors taken from the space. 
In particular, we can construct a basis using familiar views of the object. Two 
images supply four such vectors and therefore are often sufficient to span the space. 
By considering the linear combinations of the model vectors we can reproduce any 
possible view of the object. 

It is important to note that the set of views of a rigid object does not occupy the 
entire linear 4-D space. Rather, the coefficients of the linear combinations repro­
ducing valid images follow in addition two quadratic constraints. (See Appendix 
A.) In order to verify that an object undergoes a rigid transformation (as opposed 
to a general 3-D affine transformation) the model must consist of at least three 
snapshots of the object. 

Many 3-D rigid objects are bounded with smooth curved surfaces. The contours of 
such objects change their position on the object whenever the viewing position is 
changed. The linear combinations scheme can be extended to handle these objects 
as well. In this cases the scheme gives accurate approximations to the appearance 
of these objects (Ullman & Basri, 1991). 

The linear combination scheme assumes that the same object points are visible in 
the different views. When the views are sufficiently different, this will no longer hold, 



Linear Operator for Object Recognition 455 

due to self-occlusion. To represent an object from all possible viewing directions 
(e.g., both "front" and "back"), a number of different models of this type will be 
required. This notion is similar to the use of different object aspects suggested by 
Koenderink & Van Doorn (1979). (Other aspects of occlusion are discussed in the 
next section.) 

4 Recognizing an Object Using the LC Scheme 

In the previous section we have shown that the set of views of a rigid object is 
embedded in a linear space of a small dimension. In this section we define a linear 
operator that uses this property to recognize objects. We then show how this 
operator can be used in the recognition process. 

Let PI, ... , Pk be the model views, and P be a novel view of the same object. 
According to the previous section there exist coefficients a}, ... , ak such that: 
P = L:~=1 aiPi. Suppose L is a linear operator such that LPi = q for every 
1 < i ~ n and some constant vector q, then L transforms P to q (up to a scale 
factor), Lp = (L:~=1 ai)q. If in addition L transforms vectors outside the space 
spanned by the model to vectors other then q then L distinguishes views of the 
object from views of other objects. The vector q then serves as a "name" for the 
object. It can either be the zero vector, in which case L transforms every novel view 
of the object to zero, or it can be a familiar view of the object, in which case L has 
an associative property, namely, it takes a novel view of an object and transforms 
it to a familiar view. A constructive definition of L is given in appendix B. 

The core of the recognition process we propose includes a neural network that imple­
ments the linear operator defined above. The input to this network is a coordinate 
vector created from the image, and the output is an indication whether the image 
is in fact an instance of the modeled object. The operator can be implemented 
by a simple, one layer, neural network with only feedforward connections, the type 
presented by Kohonen, Oja, & Lehtio (1981) . It is interesting to note that this 
operator can be modified to recognize several models in parallel. 

To apply this network to the image the image should first be represented by its 
coordinate vectors. The construction of the coordinate vectors from the image can 
be implemented using cells with linear response properties, the type of cells encoding 
eye positions found by Zipser & Andersen (1988). The positions obtained should 
be ordered according to the correspondence of the image points with the model 
points. Establishing the correspondence is a difficult task and an obstacle to most 
existing recognition schemes. The phenomenon of apparent motion (Marr & Ullman 
1981) suggests, however, that the human visual system is capable of handling this 
problem. 

In many cases objects seen in the image are partially occluded. Sometimes also some 
of the points cannot be located reliably. To handle these cases the linear operator 
should be modified to exclude the missing points. The computation of the updated 
operator from the original one involves computing a pseudo-inverse. A method to 
compute the pseudo-inverse of a matrix in real time using neural networks has been 
suggested by Yeates (1991). 
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5 Summary 

We have presented a method for recognizing 3-D objects from 2-D images. In this 
method, an object-model is represented by the linear combinations of several 2-D 
views of the object. It has been shown that for objects undergoing rigid trans­
formations the set of possible images of a given object is embedded in a linear 
space spanned by a small number of views. Rigid transformations can be distin­
guished from more general linear transformations of the object by testing certain 
constraints placed upon the coefficients of the linear combinations. The method 
applies to objects with sharp as well as smooth boundaries. 

We have proposed a linear operator to map the different views of the same object 
into a common representation, and we have presented a simple neural network 
that implements this operator. In addition, we have suggested a scheme to handle 
occlusions and unreliable measurements. One difficulty in this scheme is that it 
requires to find the correspondence between the image and the model views. This 
problem is left for future research. 

The linear combination scheme described above was implemented and applied to a 
number of objects. Figures 1 and 2 show the application of the linear combinations 
method to artificially created and real life objects. The figures show a number of 
object models, their linear combinations, and the agreement between these linear 
combinations and actual images of the objects. Figure 3 shows the results of ap­
plying a linear operator with associative properties to artificial objects. It can be 
seen that whenever the operator is fed with a novel view of the object for which it 
was designed it returns a familiar view of the object. 
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Figure 1: Top: three model pictures of a pyramid. Bottom: two of their linear combina­
tions. 

Appendix A 

In this appendix we prove that the coordinate vectors of images of a rigid object lie 
in a 4-D linear space. We also show that the coefficients of the linear combinations 
that produce valid images of the object follow in addition two quadratic constraints. 

Let 0 be a set of object points, and let x = (Xl, ... , X n), Y = (Yl, ... , Yn), and 
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Figure 2: Top: three model pictures of a VW car. Bottom: a linear combination of the 
three images (left), an actual edge image (middle), and the two images overlayed (right). 
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Figure 3: Top: applying an associative pyramidal operator to a pyramid (left) returns a 
model view of the pyramid (right, compare with Figure 1 top left). Bottom: applying the 
same operator to a cube (left) returns an unfamiliar image (right). 
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z = (Zl, ... , zn) such that (Xi, Yi, Zi) E 0 for every 1 ~ i < n. Let P be a view of the 
object, and let x = (Xl, ... , xn) and y = (!Ill ... , !In) such that (Xi, !Ii) is the position 
of (Xi, Yi, Zi) in P. We call x, y, and z the coordinate vectors of 0, and x and y the 
corresponding coordinate vectors in P. Assume P is obtained from 0 by applying 
a rotation matrix R, a scale factor s, and a translation vector (t~, ty) followed by 
an orthographic projection. 

Claim: There exist coefficients at, a2, aa, a4 and bl, b2, ba, b4 such that: 

x alx+a2y+aaZ+a41 

y bl x+b2y+baz+b41 

where 1 = (1, ... , 1) E 1?,". 

Proof: Simply by assigning: 

al srll h sr21 
a2 sr12 b2 sr22 
aa - srla ba sr2a 
a4 t~ b4 ty 

Therefore, x, y E span{x, y, z, I} regardless of the viewpoint from which x and 
yare taken. Notice that the set of views of a rigid object does not occupy the 
entire linear 4-D space. Rather, the coefficients follow in addition two quadratic 
constraints: 

Appendix B 

a~ + a~ + a; = b~ + b~ + b; 

albl + a2b2 + aaba = 0 

A "recognition matrix" is defined as follows. Let {PI, ... , Pk} be a set of k linearly 
independent vectors representing the model pictures. Let {Pk+t, ... , Pn} be a set of 
vectors such that {pt, ... , Pn} are all linearly independent. We define the following 
matrices: 

P (Pl, .. ·,Pk,Pk+l, ''',Pn) 
Q (q, .. ·,q,Pk+t, .. ·,Pn) 

We require that: 
LP=Q 

Therefore: 
L = QP- l 

Note that since P is composed of n linearly independent vectors, the inverse matrix 
p- l exists, therefore L can always be constructed. 
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