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Abstract 

A neurophysiologically-based model is presented that controls a simulated 
kinematic arm during goal-directed reaches. The network generates a 
quasi-feedforward motor command that is learned using training signals 
generated by corrective movements. For each target, the network selects 
and sets the output of a subset of pattern generators. During the move­
ment, feedback from proprioceptors turns off the pattern generators. The 
task facing individual pattern generators is to recognize when the arm 
reaches the target and to turn off. A distributed representation of the mo­
tor command that resembles population vectors seen in vivo was produced 
naturally by these simulations. 

1 INTRODUCTION 

We have recently begun to explore the properties of sensorimotor networks with 
architectures inspired by the anatomy and physiology of the cerebellum and its in­
terconnections with the red nucleus and the motor cortex (Houk 1989; Houk et al.. 
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1990). It is widely accepted that these brain regions are important in the control 
of limb movements (Kuypers, 1981; Ito, 1984), although relatively little attention 
has been devoted to probing how the different regions might function together in 
a cooperative manner. Starting from a foundation of known anatomical circuitry 
and the results of microelectrode recordings from neurons in these circuits, we pro­
posed the concept of rubrocerebellar and corticocerebellar information processing 
modules that are arranged in parasagittal arrays and function as adjustable pattern 
generators (APGs) capable of the storage, recall and execution of motor programs. 

The aim of the present paper is to extend the APG Model to a multiple degree­
of-freedom task and to investigate how the motor representation developed by the 
model compares to the population vector representations seen by Georgopoulos 
and coworkers (e.g., Georopoulos, 1988). A complete description of the model and 
simulations reported here is contained in Berthier et al. (1991). 

2 THE APG ARRAY MODEL 

As shown in Figure 1 the model has three parts: a neural network that generates 
control signals, a muscle model that controls joint angle, and a planar, kinematic 
arm. The control network is an array of APGs that generate signals that are 
fed to the limb musculature. Because here we are interested in the basic issue of 
how a collection of APGs might cooperatively control multiple degree-of-freedom 
movements, we use a very simplified model of the limb that ignores dynamics. The 
muscles convert APG activity to changes in muscle length, which determine the 
changes in the joint angles. Activation of an APG causes movement of the arm in 
a direction in joint-angle space that is specific to that APG 1 , and the magnitude 
of an APG's activity determines the velocity of that movement. The simultaneous 
activation of selected APGs determines the arm trajectory as the superposition of 
these movements. A learning rule, based on long-term depression (e.g., Ito, 1984), 
adjusts the subsets of APGs that are selected as well as characteristics of their 
activity in order to achieve desired movements . 

Each APG consists of a positive feedback loop and a set of Purkinje cells (PCs). 
The positive feedback loop is a highly simplified model of a component of a complex 
cerebrocerebellar recurrent network. In the simplified model simulated here, each 
APG has its own feedback loop, and the loops associated with different APGs do 
not interact. When triggered by sufficiently strong activation, the neurons in these 
loops fire repetitively in a self-sustaining manner. An APG's motor command is 
generated through the action of its PCs which inhibit and modulate the buildup of 
activity in the feedback loop. The activity of loop cells is conveyed to spinal motor 
areas by rubrospinal fibers. PCs receive information that specifies and constrains 
the desired movements via parallel fibers. 

We hypothesize that the response of PCs to particular parallel fiber inputs is adap­
tively adjusted through the influence of climbing fibers that respond to corrective 
movements (Houk & Barto, 1991). The APG array model assumes that climbing 
fibers and PCs are aligned in a way that climbing fibers provide specialized infor-

ITo simplify these initial simulations we ignore changes in muscle moment arms with 
posture of the arm. 
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Figure 1: APG Control of Joint Angles. A collection of of APGs (adjustable pattern 
generators) is connected to a simulated two degree-of-freedom, kinematic, planar 
arm with antagonistic muscles at each joint. The task is to move the arm in the 
plane from a central starting location to one of eight symmetrically placed targets. 
Activation of an APG causes a movement of the arm that is specific to that APG, 
and the magnitude of an APG's activity determines the velocity of that movement. 
The simultaneous activation of selected APGs determines the arm trajectory as a 
superposition of these movements. 

mation to PCs. Gellman et al. (1985) showed that proprioceptive climbing fibers 
are inhibited during planned movements, but the data of Gilbert and Thach (1977) 
suggest that they fire during corrective movements. In the present simulations, we 
assume that corrective movements are made when a movement fails to reach the 
target. These corrective movements stimulate proprioceptive climbing fibers which 
provides information to higher centers about the direction of the corrective move­
ment. More detailed descriptions of APGs and relevant anatomy and physiology 
can be found in Houk (1989), Houk et al. (1990), and Berthier et al. (1991). 

The generation of motor commands occurs in three phases. In the first phase, we 
assume that all positive feedback loops are off, and inputs provided by teleceptive 
and proprioceptive parallel fibers and basket cells determine the outputs of the PCs. 
We call this first phase selection. We assume that noise is present during the selec­
tion process so that individual PCs are turned off (Le., selected) probabilistic ally. 
To begin the second phase, called the execution phase, loop activity is triggered by 
cortical activity. Once triggered, loop activity is self-sustaining because the loop 
cells have reciprocal positive connections. The triggering of loop activity causes the 
motor command to be "read out." The states of the PCs in the selection phase 
determine the speed and direction of the arm movement. As the movement is be­
ing performed, proprioceptive feedback and efference copy gradually depolarize the 
PCs. When a large proportion of the PCs are depolarized, PC inhibition reaches a 
critical value and terminates loop activity. In the third phase, the correction phase, 
corrective movements trigger climbing fiber activity that alters parallel fiber-PC 
connection weights. 
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Figure 2: A. Movement Trajectories After Training. The starting point for each 
movement is the center of the workspace, and the target location is the center of 
the open square. The position of the arm at each time step is shown as a dot. 
Three movements are shown to each target. B. APG selection. APG selection for 
movements to a given target is illustrated by a vector plot at the position of the 
target. An individual APG is represented by a vector, the direction of which is 
equal to the direction of movement caused by that APG in Cartesian space. The 
vector length is proportional to output of the Purkinje cells during the selection 
phase. The arrow points in the direction of the vector sum. 

3 SIMULATIONS 

We trained the APG model to control a two degree-of-freedom, kinematic, planar 
arm. The task was similar to Georgopoulos (1988) and required APGs to move the 
arm from a central starting point to one of eight radially symmetric, equidistant 
targets. Each simulated trial started by placing the endpoint of the arm in the cen­
tral starting location. The selection, execution, and correction phases of operation 
were then simulated. The task facing each of the selected APGs was to turn off at 
the proper time so that the movement stopped at the target. 

Simulations showed that the model could learn to control movements to the eight 
targets. Training typically required about 700 trials per target until the arm end­
point was consistently moved to within 1 em of the target. Figure 2 shows sample 
trajectories and population vectors of APG activity. Performance never resulted 
in precise movements due to the probabilistic nature of selection. Movement tra­
jectories tended to follow straight lines in joint-angle space and were thus slightly 
curved lines in the workspace. About half of the APGs in the model were used 
to move to an individual target with population vectors similar to those seen by 
Georgopoulos (1988). The number of APGs used for each target was dependent 
on the sharpness of the climbing fiber receptive fields, with cardioid shaped recep­
tive fields in joint-angle space giving population vectors that most resembled those 
experimentally observed. 
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4 ANALYSIS 

In order to understand how the model worked we undertook a theoretical analysis of 
its simulated behavior. Analysis indicated that the expected trajectory of a move­
ment was a straight line in joint-angle space from the starting position to the target. 
This is a special case of a mathematical result by Mussa-Ivaldi (1988). Because se­
lection is probabilistic in the APG Array Model, trajectories in the workspace varied 
from the expected trajectory. In these cases, trajectories were piecewise linear be­
cause of the asynchronous termination of APG activity. Because of the Law of 
Large Numbers, the more PCs in each APG, the more closely the movement will 
resemble the expected movement. 

The expected population of vectors of APG activity can be shown to be cosine­
shaped in joint-angle space. That is, the length of the vector representing the 
activity of APG m is proportional to the cosine of the angle between the direction 
of action of APG m and the direction of the target in joint-angle space. The shape 
of the population vectors in Cartesian space is dependent on the Jacobian of the 
arm, which is a function of the arm posture. 

The manner in which the outputs of PCs were set during selection leads to scaling of 
movement velocity with target distance. For any given movement direction, targets 
that are farther from the starting location lead to more rapid movements than closer 
targets. 

Updating network weights based on the expected corrective movement will, in some 
cases, result in changing the weights in a way that they converge to the correct 
values. However, in other cases inappropriate changes are made. In the current 
simulations, we could largely avoid this problem by selecting parameter and initial 
weight values so that movements were initially small in amplitude. Random initial­
ization of the weight values sometimes led to instances from which the learning rule 
could not recover. 

5 DISCUSSION 

In general, the present implementation of the modelled to adequate control of the 
kinematic arm and mimicked the general output of nervous system seen in actual 
experiments. The network implemented a spatial to temporal transformation that 
transformed a target location into a time varying motor command. The model 
naturally generated population vectors that were similar to those seen in vivo. Fur­
ther research is needed to improve the model's robustness and to extend it to more 
realistic control of a dynamical limb. 

In the APG array model, APGs control arm movement in parallel so that the activ­
ity of all the modules taken together forms a distributed representation. The APG 
array executes a distributed motor program because it produces a spatiotemporal 
pattern of activity in the cerebrocerebellar recurrent network that is transmitted to 
the spinal cord to comprise a distributed motor command. 
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5.1 PARAMETRIZED MOTOR PROGRAMS 

Certain features of the APG array model relate well to the ideas about parameter­
ized motor programs discussed by Keele (1973), Schmidt (1988), and Adams (1971, 
1977). The selection phase of the APG array model provides a feasible neuronal 
mechanism for preparing a parameterized motor program in advance of movement. 
The execution phase is also consistent with the open-loop ideas associated with 
motor programming concepts, except that, like Adams (1977), we explain the ter­
mination of the execution phase as being a consequence of proprioceptive feedback 
and efference copy. 

In the APG array model, the counterpart of a generalized motor program is a 
set of parallel fiber weights for proprioceptive, efference copy, and target inputs. 
Given these weights, a particular constellation of parallel fiber inputs signifies that 
the desired endpoint of a movement is about to be reached, causing PCs to become 
depolarized. Once a set of parallel fiber weights corresponding to a desired endpoint 
is learned, the neuronal architecture and neurodynamics of the cerebellar network 
functions in a manner that parameterizes the motor program. 

Movement velocity is parameterized in the selection phase of the model's operation. 
The velocity that is selected is automatically scaled so that velocity increases as the 
amplitude of the movement increases. While this type of scaling is often observed 
in motor performance studies, velocity can also be varied in an independent man­
ner where velocity scaling can be applied simultaneously to all elements of a motor 
program to slow down or speed up the entire movement. Although we have not ad­
dressed this issue in the present report, simulation of velocity scaling under control 
of a neuromodulator can naturally be accomplished in the APG array model. 

Movements terminate when the endpoint is recognized by PCs so that movement 
duration is dependent on the course of the movement instead of being determined by 
some internal clock because. Movement amplitude is parameterized by the weights 
of the target inputs, with smaller weights corresponding to larger amplitude move­
ments. 

5.2 CORRECTIVE MOVEMENTS 

We assume that the training information conveyed to the APGs is the result of crude 
corrective movements stimulating proprioceptive receptors. This sensory informa­
tion is conveyed to the cerebellum by climbing fibers. Learning in the APG array 
model therefore requires the existence of a low-level system capable of generating 
movements to spatial targets with at least a ballpark level of accuracy. Lesion (Yu 
et al., 1980) and developmental studies (von Hofsten, 1982) support the existence 
of a low-level system. Other evidence indicates that when limb movements are not 
proceeding accurately toward their intended targets, corrective components of the 
movements are generated by an unconscious, automatic control system (Goodale et 
aI., 1986). 

We assume that collaterals from the corticospinal and rubrospinal system that con­
vey the motor commands to the spinal cord gate off sensory transmission through 
the proprioceptive climbing fiber pathway, thus preventing sensory responses to the 
initial limb movement. As the initial movement proceeds, the low-level system re-
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ceives proprioceptive feedback from the limb and feedforward information about 
target location from the gaze control system. The latter information is updated as 
a consequence of corrective eye movements that typically occur after an initial gaze 
shift toward a visual target. Updated gaze information causes the spinal proces­
sor to generate a corrective component that is superimposed on the original motor 
command (Gielen & van Gisbergen, 1990; Flash & Henis, 1991). Since climbing 
fiber pathways would not be gated off by this low-level corrective process, climbing 
fibers should fire to indicate the direction of the corrective movement. 

We assume that the network by which climbing fiber activity is generated is specif­
ically wired to provide appropriate training information to the APGs (Houk & 
Barto, 1991). The training signal provided by a climbing fiber is specialized for the 
recipient APG in that it provides directional information in joint-angle space that is 
relative to the direction in which that APG moves the arm. The fact that training 
information is provided in terms of joint-angle space greatly simplifies the problem 
of providing errors in the correct system of reference. For example, if the network 
used visual error information, the error information would have to be transformed 
to joint errors. 

The specialized training signals provided by the climbing fibers are determined by 
the structure of the ascending network conveying proprioceptive information. This 
ascending network has the same structure-but works in the opposite direction-as 
the network by which the APG array influences joint movement. This is reminis­
cent of the error backpropagation algorithm (e.g., Rumelhart et al., 1986, Parker, 
1985) where the forward and backward passes through the network in the back­
propagation algorithm are accomplished by the descending and ascending networks 
of the APG Array Model. This use of the ascending network to transform errors in 
the workspace to errors that are relative to a particular APG's direction of action 
is closely related to the use of error backpropagation for "learning with a distal 
teacher" as suggested by Jordan and Rumelhart (1991). 

Houk and Barto (1991) suggested that the alignment of the ascending and de­
scending networks might come about through trophic mechanisms stimulated by 
use-dependent alterations in synaptic efficacy. In the context of the present model, 
this hypothesis implies that the ascending network to the inferior olive, is estab­
lished first, and that the descending network by which APGs influence motoneurons 
changes. We have not yet simulated this mechanism to see if it could actually gen­
erate the kind of alignment we assume in the present model. 
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