
Repeat Until Bored: A Pattern Selection Strategy

Paul W. Munro
Depamnent of Information Science

University of Pittsburgh
Pittsburgh, PA 15260

ABSTRACT

An alternative to the typical technique of selecting training examples
independently from a fixed distribution is fonnulated and analyzed, in
which the current example is presented repeatedly until the error for that
item is reduced to some criterion value, ~; then, another item is ran­
domly selected. The convergence time can be dramatically increased or
decreased by this heuristic, depending on the task, and is very sensitive
to the value of ~.

1 INTRODUCTION

In order to implement the back propagation learning procedure (Werbos, 1974; Parker,
1985; Rumelhart, Hinton and Williams, 1986), several issues must be addressed. In addi­
tion to designing an appropriate network architecture and detennining appropriate values
for the learning parameters, the batch size and a scheme for selecting training examples
must be chosen. The batch size is the number of patterns presented for which the corre­
sponding weight changes are computed before they are actually implemented; immediate
update is equivalent to a batch size of one. The principal pattern selection schemes are
independent selections from a stationary distribution (independent identically distributed,
or i.i.d.) and epochal, in which the training set is presented cyclically (here, each cycle
through the training set is called an epoch). Under Li.d. pattern selection, the learning
perfonnance is sensitive to the sequence of training examples. This observation suggests
that there may exist selection strategies that facilitate learning. Several studies have
shown the benefit of strategic pattern selection (e.g., Mozer and Bachrach, 1990; Atlas,
Cohn, and Ladner, 1990; Baum and Lang, 1991).

1001

1002 Munro

lYPically, online learning is implemented by independent identically distributed pattern se­
lection, which cannot (by definition) take advantage of useful sequencing strategy. It
seems likely, or certainly plausible, that the success of learning depends to some extent
on the order in which stimuli are presented. An extreme, though negative, example
would be to restrict learning to a portion of the available training set; i.e. to reduce the ef­
fective training set. Let sampling functions that depend on the state of the learner in a
constructive way be termed pedagogical.

Determination of a particular input may require information exogenous to the learner; that
is, just as training algorithms have been classified as supervised and unsupervised, so can
pedagogical pattern selection techniques. For example, selection may depend on the net­
worlc's performance relative to a desired schedule. The intent of this study is to explore
an unsupervised selection procedure (even though a supervised learning rule, backpropaga­
tion, is used). The initial selection heuristic investigated was to evaluate the errors across
the entire pattern set for each iteration and to present the pattern with the highest error, of
course, this technique has a large computational overhead, but the question was whether it
would reduce the number of learning trials. The results were quite to the contrary; pre­
liminary trials on small tasks (two and three bit parity), show that this scheme performs
very poorly with all patterns maintaining high error.

A new unsupervised selection technique is introduced here. The "Repeat-Until-Bored"
heuristic is easily implemented and simply stated: if the current training example gener­
ates a high error (Le. greater than a fixed criterion value), it is repeated; otherwise, another
one is randomly selected. This approach was motivated by casual observations of behav­
ior in small children; they seem to repeat seemingly arbitrary tasks several times, and
then abruptly stop and move to some seemingly arbitrary alternative (Piaget, 1952). For
the following discussion, lID and RUB will denote the two selection procedures to be
compared.

2 METHODOLOGY

RUB can be implemented by adding a condition to the lID statement; in C, this is simply

old (lID) : patno = random () % numpatsi
new(RUB): if (paterror<beta) patno = random() % numpatsj

where patno identifies the selected pattern, numpats is the number of patterns in the train­
ing set, and paterror is the sum squared error on a particular pattern. Thus, an example is
presented and repeated until it has been learned by the network to some criterion level, the
squared error summed across the output units is less than a "boredom" criterion ~; then ,
another pattern is randomly selected.

The action of RUB in weight space is illustrated in Figure 1, for a two dimensional envi­
ronment consisting of just two patterns. Corresponding to each pattern, there is an iso­
cline (or equilibrium surface) , defined by the locus of weight vectors that yield the desired
response to that pattern (here, a or b). Since the delta rule drives the weight parallel to
the presented pattern, trajectories in weight space are perpendicular to the pattern's iso­
cline. Here, RUB is compared with alternate pattern selection.

Repeat Until Bored: A Pattern Selection Strategy 1003

wea=A

an II D trajectory

a RUB trajectory

Figure 1. Effect of pattern selection on weight state trajectory. A linear unit can be
trained to give arbitrary responses (A and B) to given stimuli (a and b). The isoclines
(bold lines) are defined to be the set of weights that satisfy each stimulus-response
pair. Thus, the intersection is the weight state that satisfies both constraints. The
delta rule drives the weights toward the isocline that corresponds to the presented
pattern. The RUB procedure repeats a pattern until the state approaches the isocline.

The RUB procedure was tested for a broad range of ~ across several tasks. Two perfor­
mance measures were used; in both cases, performance was averaged across several (20-
1(0) trials with different initial random weights. For the parity tasks, performance was
measured as the fraction of trials for which the squared error summed over the training set
reached a sufficiently low value (usually 0.1) within a specified number of training exam­
pIes. Since the parity task always converged for sufficiently large ~,performance was
measured as the number of trials that converged within a pre specified number of iterations
required to reduce the total squared error summed across the pattern set to a low value
(typically, 0.1). Note that each iteration of weight modification during a set of repeated
examples was explicitly counted in the performance measure, so the comparison between
lID and RUB is fair. Also, for each task, the learning rate and momentum were fixed
(ususally 0.1 and 0.9, respectively).

Consideration of RUB (see the above C implementation, for example) indicates that, for
very small values of ~, the first example will be repeated indefinitely, and the task can
therefore not be learned. At the other extreme, for ~ greater than or equal to the maxi­
mum possible squared error (2.0, in this case), perfonnance should match IID.

1004 Munro

3 RESULTS

3.1. PARITY

While the expected behavior for RUB on the two and three bit parity tasks (Figure 2) is
observed for low and high values of ~, there are some surprises in the intermediate range.
Rather than proceeding monotonically from zero to its lID value, the performance curve
exhibits an "up-down-up" behavior; it reaches a maximum in the range O.2<~O.25, then
plummets to zero at J3=O.25, remains there for an interval, then partially recovers at its
final (lID) level. This "dead zone" phenomenon is not as pronounced when the momen­
tum parameter is set to zero (Figure 3).

100 100

80 80

60 60

40 40

20 20

0 0
.0001 .001 .01 .1 10 .0001 .001 .01 .1 10

Figure 2. Performance profiles for the parity task. Each point is the average
number of successful simulations out of 100 trials. A log scale is used so that
the behavior for very low values of the error cr~erion is evident. Note the
critical falloff at ~"'0.25 for both the XOR task (left) and three-bit parity (right).

100 100

80 80

60 60

40 40

20 20

0 0
.0001 .001 .01 .1 10 .0001 .001 .01 .1 1 10

Figure 3. Performance profiles with zero momemtum. For these two tasks,
the up-down-up phenomenon is still evident, but there is no "dead zone".
Left: XOR Right: Three bit parity

Repeat Until Bored: A Pattern Selection Strategy 1005

3.2 ENCODERS

The 4-2-4 encoder shows no significant improvement over the lID for any value of RUB.
Here, perfonnance was measured both in tenns of success rate and average number of iter­
ations to success. Even though all simulations converge for ~>.001 (Le., there is no
dead zone), the effect of ~ is reflected in another perfonnance measure: average number of
iterations to convergence (Figure 4). However, experiments with the 5-2-5 encoder task
show an effect. While backprop converges for all values of ~ (except very small values),
the perfonnance, as measured by number of pattern presentations, does show a pro­
nounced decrement. The 8-3-8 encoder shows a significant, but less dramatic, effect.

6000 1 st data value:
8691.0 • 5-2-5

CD
u 6 4-2-4
~ 6 8-3-8 CD
~ ..
CD
>
~ 4000 0
u
0 -en
~
0
::= as ..
CD 2000
== CD
~ as ..
CD

~

0
.001 .01 .1 1 10

13
Figure 4. Encoder performance profiles. See text.

3.3 THE MESH

The mesh (Figure 5, left) is a 2-D classification task that can be solved by a strictly lay­
ered net with five hidden units. Like the encoder and unlike parity, lID is found to con­
verge on 100% of trials; however, there is a critical value of ~ and a well-defined dead
zone (Figure 5, right). Note that the curve depicting average number of iterations to con­
vergence decreases monotonically, interrupted at the dead zone but continuing its apparent
trend for higher values of ~.

1006 Munro

20 ~~----~~"~----T10+
0 0

'b
0 4b

~
• ~
0 • • • c: 06"

0 0 • UC'i 10
(I)

• a~ '- 4 -• • J!
• :::J

.S
CI)

0
.0001 .001 .01 .1 1 10

~
Figure 5. The mesh task. Left: the task. Right: Performance profile. Number of
simulations that converge is plotted along the bold line (left vertical) axis. Average
number of iterations are plotted as squares (right vertical axis).

3A NONCONVERGENCE

Nonconvergence was examined in detail for three values of ~, corresponding to high per­
fonnance, poor perfonnance (the dead zone), and lID, for the three bit parity task. The
error for each of the eight patterns is plotted over time. For trials that do not converge
(Figure 6), the patterns interact differently, depending on the value of~. At (3=0.05 (a
"good" value of ~ for this task), the error traces for the four odd-parity patterns are strong­
ly correlated in an irregular oscillatory mode, as are the four even-parity traces, but the
two groups are strongly anticorrelated. In the odd parity group, the error remains low for
three of the patterns (001, 010, and 100), but ranges from less than 0.1 to values greater
than 0.95 for the fourth (111). Traces for the even parity patterns correspond almost iden­
tically; i.e. not only are they correlated, but all four maintain virtually the same value.

At this point, the dead zone phenomenon has only been observed in tasks with a single
output unit. This property hints at the following explanation. Note first that each
input/output pair in the training set divides the weight space into two halves, character­
ized by the sign of the linear activation into the output unit; that is, whether the output
is above or below 0.5, and hence whether the magnitude of the difference between the ac­
tual and desired responses is above or below 0.5. Since ~ is the value of the squared
error, learning is repeated for (3=0.25 only for examples for which the state is on the
wrong half of weight space. Just when it is about to cross the category boundary, which
would bring the absolute value of the error below .5, RUB switches to another example,
and the state is not pushed to the other side of the boundary. This conjecture suggests
that for tasks with multiple output units, this effect might be reduced or eliminated, as
has been demonstrated in the encoder examples.

Repeat Until Bored: A Pattern Selection Strategy 1007

~ = 0.05 ~ = 0.3
1.0't:::-----"""':;;:::~-~::;:'1 1.0~----------------------~

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0.0 ~-=::=...-...... ~:=._IIIIIIIC:~ o.o -----------~
25500 25600 4900 5000

~ = 2.0
1.0 -r---------------------~

0.8

0.6

0.4

0.2

0.0~---------------4

29000 29100

4 DISCUSSION

Figure 6. Error traces for
individual patterns. For each
of three values of the error
criterion, the variation of the
error for each pattern is
plotted for 100 iterations of
the three-bit parity task that
did not converge. Note the
large amplitude swings for low
values (upper left), and the
small amplitude oscillations in
the "dead zone" (upper right).

Active learning and boredom. The sequence of training examples has an undeniable effect
on learning, both in the real world and in simulated learning systems. While the RUB
procedure influences this sequence such that the learning perfonnance is either positively
or negatively affected, it is just a minimal instance of active learning; more elaborate
learning systems have explored similar notions of "boredom" (eg., Scott and Markovitch,
1989).

Nonconvergence. From Figure 6 it can be seen, for both RUB and lID, that nonconver­
gence does not correspond to a local minimum in weight space. In situations where the
overall error is "stuck" at a non-zero value, the error on the individual patterns continues
to change. The weight trajectory is thus "trapped" in a nonoptimal orbit, rather than a
nonoptimal equilibrium point.

1008 Munro

Acknowledgements

This research was supported in part by NSF grant 00-8910368 and by Siemens Corporate
Research, which kindly provided the author with financial support and a stimulating re­
search environment during the summer of 1990. David Cohn and Rile Belew were helpful
in bringing relevant work to my attention.

References

Baum, E. and Lang, K. (1991) Constructing multi-layer neural networks by searching
input space rather than weight space. In: Advances in Neural Information Processing
Systems 3. D. S. Touretsky, ed. Morgan Kaufmann.

Cohn, D., Atlas, L., and Ladner, R. (1990) Training connectionist networks with queries
and selective sampling. In: Advances in Neural Information Processing Systems 2. D.
S. Touretsky, ed. Morgan Kaufmann.

Mozer, M. and Bachrach, J. (1990) Discovering the structure of a reactive environment by
exploration. In: Advances in Neural Information Processing Systems 2. D. S.
Touretsky, ed. Morgan Kaufmann.

Parker, D. (1985) Learning logic. TR-47. MIT Center for Computational Economics
and Statistics. Cambridge MA.

Piaget, J. (1952) The Origins of Intelligence in Children. Norton.

Rumelhart D., Hinton G., and Williams R. (1986) Learning representations by back­
propagating errors. Nature 323:533-536.

Scott, P. D. and Markovitch, S. (1989) Uncertainty based selection of learning experi­
ences. Sixth International Workshop on Machine Learning. pp.358-361

Werbos, P. (1974) Beyond regression: new tools for prediction and analysis in the behav­
ioral sciences. Unpublished doctoral dissertation, Harvard University.

