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Abstract 

This paper deals with an application of Neural Networks to satellite 
remote sensing observations. Because of the complexity of the 
application and the large amount of data, the problem cannot be solved 
by using a single method. The solution we propose is to build multi­
modules NN architectures where several NN cooperate together. Such 
system suffer from generic problem for whom we propose solutions. 
They allow to reach accurate performances for multi-valued function 
approximations and probability estimations. The results are compared 
with six other methods which have been used for this problem. We 
show that the methodology we have developed is general and can be 
used for a large variety of applications. 
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1 INTRODUCTION 

Neural Networks have been used for many years to solve hard real world applications 
which involve large amounts of data. Most of the time, these problems cannot be solved 
with a unique technique and involve successive processing of the input data. 
Sophisticated NN architectures have thus been designed to provide good performances e.g. 
[Lecun et al. 90]. However this approach is limited for many reasons: the design of 
these architectures requires a lot of a priori knowledge about the task and is complicated. 
Such NN are difficult to train because of their large size and are dedicated to a specific 
problem. Moreover if the task is slightly modified, these NN have to be entirely 
redesigned and retrained. It is our feeling that complex problems cannot be solved 
efficiently with a single NN whatever sophisticated it is. A more fruitful approach is to 
use modular architectures where several simple NN modules cooperate together. This 
methodology is far more general and allows to easily build very sophisticated architectures 
which are able to handle the different processing steps which are necessary for example in 
speech or signal processing. These architectures can be easily modified to incorporate 
some additional knowledge about the problem or some changes in its specifications. 

We have used these ideas to build a multi-module NN for a satellite remote sensing 
application. This is a hard problem which cannot be solved by a single NN. The 
different modules of our architecture are thus dedicated to specific tasks and allow to 
perform successive processing of the data. This approach allows to take into account in 
successive steps different informations about the problem. Furthermore, errors which 
may occur at the output of some modules may be corrected by others which allows to 
reach very good performances. Making these different modules cooperate raises several 
problems which appear to be generic for these architectures. It is thus interesting to study 
different solutions for their design, training, and the efficient information exchanges 
between modules. In the present paper, we first briefly describe the geophysical problem 
and its difficulties, we then present the different modules of our architecture and their 
cooperation, we compare our results to those of several other methods and discuss the 
advantages of our method. 

2 THE GEOPHYSICAL PROBLEM 

Scatterometers are active microwave radars which accurately measure the power of 
transmitted and backscatter signal radiations in order to compute the normalized radar cross 
section (ao) of the ocean surface. The ao depends on the wind speed, the incidence angle 9 
(which is the angle between the radar beam and the vertical at the illuminated cell) and the 
azimuth angle (which is the horizontal angle X between the wind and the antenna of the 
radar). The empirically based relationship between ao and the local wind vector can be 
established which leads to the determination of a geophysical model function. 

The model developed by A. Long gives a more precise form to this functional. It has 
been shown that for an angle of incidence 9, the general expression for ao can be 
satisfactorily represented by a Fourrier series: 
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(1) 

with U = A.v"! 

Long's model specifies that A and 'Y only depend on the angle of incidence 9, and that bi 
and b2 are a function of both the wind speed v and the angle of incidence 9 (Figure 1). 

Figure 1 : Definition of the different geophysical scales. 

For now, the different parameters bl, b2 A and y used in this model are determined 
experimentally. 

Conversely it becomes possible to compute the wind direction by using several antenna 
with different orientations with respect to the satellite track. The geophysical model 
function (1) can then be inverted using the three measurements of 0'0 given by the three 
antennas, it computes wind vector (direction and speed). Evidence shows that for a given 
trajectory within the swath (Figure 1) i.e. (91,92,93) fixed, 9i being the incidence angle of 
the beam linked to antenna i, the functional F is of the fonn presented in Fig.2 . 

In the absence of noise, the determination of the wind direction would be unique in most 
cases. Noise-free ambiguities arise due to the bi-hannonic nature of the model function 
with respect to X. The functional F presents singular points. At constant wind speed F 
yields a Lissajous curve; in the singular points the direction is ambiguous with respect 
to the triplet measurements (0'1,0'2,0'3) as it is seen in Fig. 2. At these points F yields 
two directions differing by 160°. In practice, since the backscatter signal is noisy the 
number and the frequency of ambiguities is increased. 
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Figure 2 : (a) Representation of the Functional F for a given trajectory (b) Graphics 
obtained for a section of (a) at constant wind speed. 

The problem is therefore how to set up an accurate (exact) wind map using the observed 
measurements (0'1,0'2,0'3) . 

3 THE METHOD 

We propose to use multi-layered quasi-linear networks (MLP) to carry out this inversion 
phase. Indeed these nets are able of approximate complex non-linear functional relations; 
it becomes possible by using a set of measurements to determine F and to realize the 
inversion. 

The determination of the wind's speed and direction lead to two problems of different 
complexity, each of them is solved using a dedicated multi-modular system. The two 
modules are then linked together to build a two level architecture. To take into account 
the strong dependence of the measurements with respect to the trajectory, each module (or 
level) consists of n distinct but similar systems, a specific system being dedicated to each 
satellite trajectory (n being the number of trajectories in a swath (Figure 1)). 

The first level will allow the determination of the wind speed at every point of the swath. 
The results obtained will then be supplied to the second level as supplementary data 
which allow to compute the wind direction. Thus, we propose a two-level architecture 
which constitutes an automatic method for the computation of wind maps (Figure 3). 
The computation is performed sequentially between the different levels, each one 
supplying the next with the parameters needed. 

Owing to the space variability of the wind, the measurements at a point are closely related 
to those performed in the neighbourhood. Taking into account this context must 
therefore bring important supplementary information to dealiase the ambiguities. At a 
point, the input data for a given system are therefore the measurements observed at that 
point and at it's eight closest neighbours. 

All the networks used by the different systems are MLP trained with the back-propagation 
algorithm. The successive modifications were performed using a second order stochastic 
gradient: which is the approximation of the Levenberg-Marquardt rule. 
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Figure 3 : The three systems SI, S2 and S3 for a given trajectory. 

One system is dedicated to a proper trajectory. As a result the networks used on the same 
level of the global architecture are of the same type; only the learning set numerical 
values change from one system to another. Each network learning set will therefore 
consist of the data mesured on its trajectory. We present here the results for the central 
trajectory, perfonnances for the others are similar. 

3.1 THE NETWORK DECODING : FIRST LEVEL 

A system (S 1) in the first level allows to compute the wind speed (in ms- 1) along a 
trajectory. Because the function Fl to be learned (signal ~ wind speed) is highly non-
linear, each system is made of three networks (see Figure 3) : Rl allows to decide the 
range of the wind speed (4 ~ v < 12 or 12 ~ v < 20); according to the Rl output an 
accurate value is computed using R2 for the first range and R3 for the other. The first 
level is built from 10 of these systems (one for each trajectory). 

Each network (Rl, R2, R3) consists of four fully connected layers. For a given point, we 
have introduced the knowledge of the radar measurements at the neighbouring points. The 
same experiments were performed without introducing this notion of vicinity, the 
learning and test performances were reduced by 17%, which proves the advantages of this 
approach. The input layer of each network consists of 27 automata: these 9x3 automata 
correspond to the 0'0 values relative to each antenna for the point to be considered and its 
eight neighbours. 

Rl output layer has two cells: one for 4 ~ v < 12 and the other for 12 ~ v < 20; so its 
4 layers are respectively built of 27, 25, 25, 2 automata. 

R2 and R3 compute the exact wind speed. The output layer is represented by a unique 
output automaton and codes this wind speed v at the point considered between [-1, + I] . 
The four layers of each network are respectively formed of27, 25, 25,1 automata. 
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3.2 DECODING THE DIRECTION : SECOND LEVEL 

Now the function F2 (signal ~ wind direction) has to be learned. This level is located 
after the first one, so the wind speed has already been computed at all points. For each 
trajectory a system S2 allows to compute the wind direction, it is made of an MLP and a 
Decision Direction Process (we call it D). As for FI we used for each point a contextual 
information. Thus, the input layer of the MLP consists of 30 automata : the first 9x3 
correspond to the ao values for each antenna, the last three represent three times the first 
level computed wind speed. However, because the original function has major ambiguities 
it is more convenient to compute, for a given input, several output values with their 
probabilities. For this reason we have discretized the desired output. It has been coded in 
degrees and 36 possible classes have been considered, each representing a 10° interval 
(between 0° and 360°). So, the MLP is four layered with respectively 30, 25, 25, 36 
automata. It can be shown, according to the coding of the desired output, that the network 
approximates Bayes discriminant function or Bayes probability distribution related to the 
discretized transfer function F 2 [White, 89]. The interpretation of the MLP outputs using 
the D process allows to compute with accuracy the required function F 2. The network 
outputs represents the 36 classes corresponding to the 36 10° intervals. For a given input, 

a computed output is a ~36 vector whose components can be interpreted to predict the 
wind direction in degrees. Each component, which is a Bayes discrim inant function 
approximation, can be used as a coefficient of likelihood for each class. The Decision 
Direction Process D (see Fig. 3) computes real directions using this information. It 
performs the interpolation of the peaks' curve. D gives for each peak ist wind direction 
with its coefficients of likelihood. 

o 30 60 90 120 150 180 210 240 270 300 330 3600 

Figure 4 : network's output. The points in the x -axis correspond to the 36 outputs. Each 
represents an interval of 10° between 0 and 360°. The Y-axis points give the automata 
computed output The point indicated by a d corresponds to the desired output angle, ~ is 
the most likely solution proposed by D and p is the second one. 

The computed wind speed and the most likely wind direction computed by the first two 
levels allow to build a complete map which still includes errors in the directions. As we 
have seen in section 2, the physical problem has intrinsic ambiguities, they appear in the 
results (table 2). The removal of these errors is done by a third level of NN. 
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3.3 CORRECTING THE REMAINING ERRORS : THIRD LEVEL 

This problem has been dealt with in [Badran & al 91] and is not discussed here. The 
method is related to image processing using MLP as optimal filter. The use of different 
filters taking into account the 5x5 vicinities of the point considered permits to detect the 
erroneous directions and to choose among the alternative proposed solutions. This method 
enables to correct up to 99.5% of the errors. 

4 RESULTS 

As actual data does not exist yet, we have tested the method on values computed from real 
meteorological models. The swaths of the scatterometer ERS 1 were simulated by flying 
a satellite on wind fields given by the ECMWF forecasting model. The sea roughness 
values (0'1,0'2,0'3) given by the three antennas were computed by inverting the Long 
model. Noise was then added to the simulated measurements in order to reproduce the 
errors made by the scatterometer. (A gaussian noise of zero average and of standard 
deviation 9.5% for both lateral antennas and 8.7% for the central antenna was added at 
each measurement).Twenty two maps obtained for the southern Atlantic Ocean were used 
to establish the learning sets. The 22 maps were selected randomly during the 30 days of 
September 1985 and nine remaining maps were used for the tests. 

4.1 DECODING THE SPEED : FIRST LEVEL 

In the results presented in Table 1, a predicted measurement is considered correct if it 
differs from the desired output by 1 m/s. It has to be noticed that the oceanographer's 
specification is 2 m/s; the prescnt results illustrate the precision of the method. 

a e T bl 1 : per ormances on t e wm fi h . d spee d 
Performances performances bias 

Accuracy 1 ml s learninf? 99.3% 0.045m/s 
test 98,4 % 0.038m/s 

4.2 DECODING THE DIRECTION : SECOND LEVEL 

It is found that good performances are obtained after the interpretation of the best two 
peaks only. When it is compared to usual methods which propose up to six possible 
directions, this method appears to be very powerful. Table 2 shows the performances 
using one or two peaks. The function F and its singularities have been recovered with a 
good accuracy, the noise added during the simulations in order to reproduce the noise made 
by the measuring devices has been removed. 

T bl 2 a e r£ h . dd' : pe ormances on t e wm uectlOn usmg th I e com~ ete ~stem 
Performances one peak two peaks 
Precision 20° learnim~ 68.0 % 99.1 % 

test 72.0 % 99.2 % 
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5 VALIDATION OF THE RESULTS 

In order to prove the power of the NN approach, table 3 compare our results with six 
classical methods [Chi & Li 88]. 

Table 3 shows that the NN results are very good compared to other techniques, moreover 
all the classical methods are based on the assumption that a precise analytical function 
«v ,X) ~ 0') exists, the NN method is more general and does not depend on such an 
assumption. Moreover the decoding of a point with NN requires approximately 23 ms on 
a SUN4 working station. This time is to be compared with the 0.25 second necessary for 
the decoding by present methods. 

Table 3 : performances simulation results Erms (in m/s) for different fixed wind speed 
Speed WLSL ML LS WLS AWLS L1 LWSS N.N 

Low 0.92 0.66 0.67 0.74 0.69 0.63 1.02 0.49 
Middle 0.89 0.85 1.10 1.31 0.89 0.98 0.87 0.53 
Hight 3.71 3.44 4.11 5.52 3.52 4.06 3.49 1.18 

The wind vector error e is defined as follows: e = V1 - V2 where V1 is the true 
wind vector and V2 is the estimated wind vector, Erms = E( II ell). 

6 CONCLUSION 

Performances reached when processing satellite remote sensing observations have proved 
that multi-modular architectures where simple NN modules cooperate can cope with real 
world applications. The methodology we have developed is general and can be used for a 
large variety of applications, it provides solutions to generic problems arising when 
dealing with NN cooperation. 
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