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Abstract

We compare two strategies for training connectionist (as well as non-
connectionist) models for statistical pattern recognition. The probabilistic strat-
egy is based on the notion that Bayesian discrimination (i.e., optimal classifica-
tion) is achieved when the classifier learns the a posteriori class distributions of
the random feature vector. The differential strategy is based on the notion that
the identity of the largest class a posteriori probability of the feature vector is
all that is needed to achieve Bayesian discrimination. Each strategy is directly
linked to a family of objective functions that can be used in the supervised training
procedure. We prove that the probabilistic strategy — linked with error measure
objective functions such as mean-squared-error and cross-entropy — typically
used to train classifiers necessarily requires larger training sets and more complex
classifier architectures than those needed to approximate the Bayesian discrim-
inant function. In contrast, we prove that the differential strategy — linked
with classification figure-of-merit objective functions (CFM,u,n, ) [3] — requires
the minimum classifier functional complexity and the fewest training examples
necessary to approximate the Bayesian discriminant function with specified pre-
cision (measured in probability of error). We present our proofs in the context of
a game of chance in which an unfair C-sided die is tossed repeatedly. We show
that this rigged game of dice is a paradigm at the root of all statistical pattern
recognition tasks, and demonstrate how a simple extension of the concept leads
us to a general information-theoretic model of sample complexity for statistical
pattern recognition.
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1 Introduction

Creating a connectionist pattern classifier that generalizes well to novel test data has recently
focussed on the process of finding the network architecture with the minimum functional
complexity necessary to model the training data accurately (see, for example, the works of
Baum, Cover, Haussler, and Vapnik). Meanwhile, relatively little attention has been paid to
the effect on generalization of the objective function used to train the classifier. In fact, the
choice of objective function used to train the classifier is tantamount to a choice of training
strategy, as described in the abstract [2, 3].

We formulate the proofs outlined in the abstract in the context of a rigged game of dice in
which an unfair C-sided die is tossed repeatedly. Each face of the die has some probability of
turning up. We assume that one face is always more likely than all the others. As a result, all
the probabilities may be different, but at most C — 1 of them can be identical. The objective
of the game is to identify the most likely die face with specified high confidence. The
relationship between this rigged dice paradigm and statistical pattern recognition becomes
clear if one realizes that a single unfair die is analogous to a specific point on the domain
of the random feature vector being classified. Just as there are specific class probabilities
associated with each point in feature vector space, each die has specific probabilities
associated with each of its faces. The number of faces on the die equals the number of
classes associated with the analogous point in feature vector space. Identifying the most
likely die face is equivalent to identifying the maximum class a posteriori probability for
the analogous point in feature vector space — the requirement for Bayesian discrimination.
We formulate our proofs for the case of a single die, and conclude by showing how a simple
extension of the mathematics leads to general expressions for pattern recognition involving
both discrete and continuous random feature vectors.

Authors’ Note: In the interest of brevity, our proofs are posed as answers to questions that
pertain to the rigged game of dice. It is hoped that the reader will find the relevance of
each question/answer to statistical pattern recognition clear. Owing to page limitations, we
cannot provide our proofs in full detail; the reader seeking such detail should refer to [1].
Definitions of symbols used in the following proofs are given in table 1.

1.1 A Fixed-Point Representation

The M,-bit approximation gy[x] to the real number x € (—1, 1] is of the form
MSB (most significant bit) = sign[x]

MSB — 1

l
LSB (leaSt Slgmﬁcamblt) = 2"”?"1)

with the specific value defined as the mid-point of the 2~*:—1 -wide interval in which x
is located:

2! (1)

o [ sigolel - (Llxl - 2MeD | 200D 4 o7M)  y) <1
gulx] = ()
signx] - (1 — 27M) x| =1
The lower and upper bounds on the quantization interval are
Ly,[x] < x < Um,[x] (3)
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Table 1: Definitions of symbols used to describe die faces, probabilities, probabilistic
differences, and associated estimates.

Symbol Definition

wy The true jth most likely die face (@,; is the estimated jth most likely face).
P(w;) The probability of the true jth most likely die face.

k; The number of occurrences of the true jth most likely die face.
P(w;) An empirical estimate of the probability of the true jth most likely die face:

f’(w,,-) = l—i'i (note n denotes the sample size)
Ay The probabilistic difference involving the true rankings and probabilities of the
C die faces:
) Ar = Plws) — sup; ,; P(wy)
A, The probabilistic difference involving the true rankings but empirically estimated
probabilities of the C die faces:

Ai = P(wn) — sup; i Pwy) = m

where

Ly,[x] = qulx] — 27 4
and

Un,[x] = qulx] + 27 (5)

The fixed-point representation described by (1) — (5) differs from standard fixed-point
representations in its choice of quantization interval. The choice of (2) — (5) represents zero
as a negative — more precisely, a non-positive — finite precision number. See [1] for the
motivation of this format choice.

1.2 A Mathematical Comparison of the Probabilistic and Differential Strategies

The probabilistic strategy for identifying the most likely face on a die with C faces involves
estimating the C face probabilities. In order for us to distinguish P(w,;) from P(w,3), we
must choose M, (i.e. the number of bits in our fixed-point representation of the estimated
probabilities) such that

guPwn)] > quP(wn)] ©)

The distinction between the differential and probabilistic strategies is made more clear if
one considers the way in which the M,-bit approximation A,; is computed from a random
sample containing k,; occurrences of die face w,; and k,» occurrences of die face w,; . For
the differential strategy

; ki —k
Arl differential = GM [_1;—_’2] (7)
and for the probabilistic strategy

5 k, k,
A probasitisic = qu [——1] — qu [—3] 8)
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where
A £ Pw) — supPw) i=1,2,...C ©)
A
Note that when i = rl
A=l = P(wn) — P(wp) (10)
and when i # rl
Aignn = P(w) — P(wn) (11)
Note also
Ay = —-4p (12)
Since
Zj A = Z P(wi) — (€ —2)P(wp) (13)
i=r3

we can show that the C dJﬂ'erenccs of (9) yield the C probabilities by
) <
-5

i=r2

Pwy) = A +Pwn) Vi>1

Thus, estimating the C differences of (9) is equivalent to estimating the C probabilities
P(w1), P(w2),. .., Pwe).

Clearly, the sign of Ay in (7) is modeled correctly (i.e., /3.,1 differential CaN correctly identify
the most likely face) when Mq = 1, while this is typically not the case for A,1 probabilistic
in (8) In the latter case, An probabilisiic 1S Zero when M, = 1 because gm[P(wy1)] and

qM[P(w,g)] are indistinguishable for M, below some minimal value implied by (6). That
minimal value of M, can be found by recognizing that the number of bits necessary for (6)
to hold for asymptotically large n (i.e., for the quantized difference in (8) to exceed one
LSB) is

P(wn)
(14)

(L + [-log [4al], —log, [Pwy)] 3 2* j € {1,2}
sign bit magnit;dc bits
quin = A .
1+ I—logz [An1]] + 1, otherwise

| signbit magnitude bits

(15)
where Z* represents the set of all positive integers. Note that the conditional nature of
M, min in (15) prevents the case in which lim,_.o P(wn) — € = Ly, [P(ws)] or P(wp) =
Uwm,[P(wy2)]; either case would require an infinitely large sample size before the variance
of the corresponding estimated probability became small enough to distinguish g [f’(w,l )}
from gy [P(wy)]. The sign bit in (15)is not required to estimate the probabilities themselves
in (8), but it is necessary to compute the difference between the two probabilities in that
equation — this difference being the ultimate computation by which we choose the most
likely die face.
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1.3 The Sample Complexity Product

We introduce the sample complexity product (SCP) as a measure of both the number of
samples and the functional complexity (measured in bits) required to identify the most
likely face of an unfair die with specified probability.

SCP 2 n-M, st P(mostlikely face correctly ID’d) > @ (16)

2 A Comparison of the Sample Complexity Requirements for the
Probabilistic and Differential Strategies

Axiom 1 We view the number of bits M, in the finite-precision approximation qu[x] to
the real number x € (—1,1] as a measure of the approximation’s functional complexity.
That is, the functional complexity of an approximation is the number of bits with which it
represents a real number on (—1,1].

Assumption 1 If P(w,1) > P(wy2), then P(w,1) will be greater than P(wy;) Vj > 2 (see [1]
for an analysis of cases in which this assumption is invalid).

Question: What is the probability that the most likely face of an unfair die will be empiri-
cally identifiable after n tosses?

Answer for the probabilistic strategy:

P (aulPwn)] > aulP(wy)], ¥j>1)

v K. v2 kK. - _ (n—-K1-ka)
s w30 e [ 5 Beat (= Fun) - Poa) -
k'l = rl- ka=/\2 r2 - rl .
where

A = max(8+1,f'-c-—_-—l-(-;—2-+l) VC > 2
thh = n
A =0 (18)
n = min(B:n—'krl)

B = {Bum,} = kuy,[Pwn)] = kg, [P(wn)] — 1

There is a simple recursion in [1] by which every possible boundary for M,-bit quantization
leads to itself and two additional boundaries in the set {By, } for (M, + 1)-bit quantization.

Answer for the differential strategy:

P (L, [44) < A < U [4n), 4y < 0 ¥j>1)
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= nl UZI M [f: P(‘«-’;rz)k’2 (1“P(wrl)_P(wrz))(”_krl—kn)] 1)

k! ka!(n -k, — !
| #EOW : | STV ! : krz)
where
Al = max (kz‘,'[ﬂ,q],ﬁc-_—_—lfli+l) VC > 2
v = n (20)

A = max (0, kn —ku.,[AA])

v o= min(kn ke, [4a], 1~k )

Since the multinomial distribution is positive semi-definite, it should be clear from a
comparison of (17) - (18) and (19) — (20) that P (LM,[AA] <Ay < UM,[A,,]) is largest

(and larger than any possible P (qy[f’(wﬂ)] > gulPwy)), Vj> 1) ) for a given sample

size n when the differential strategy is employed with M, = 1 such that Ly [4,1] = 0 and
Um,[An]=1(ie., kg, [41]=1 and ku,, [A,1] = n). The converse is also true, to wit:

Theorem 1 For a fixed value of n in (19), the 1-bit approximationto A, yields the highest
probability of identifying the most likely die face w,; .

It can be shown that theorem 1 does not depend on the validity of assumption 1 [1]. Given
Axiom 1, the following corollary to theorem 1 holds:

Corollary 1 The differential strategy’s minimum-complexity 1-bit approximation of A,
yields the highest probability of identifying the most likely die face wy, for a given number
of tosses n.

Corollary 2 The differential strategy’'s minimum-complexity 1-bit approximation of A,
requires the smallest sample size necessary (nmin) to identify P(w,1) — and thereby the most
likely die face w,y — correctly with specified confidence. Thus, the differential strategy
requires the minimum SCP necessary to identify the most likely die face with specified
confidence.

2.1 Theoretical Predictions versus Empirical Results

Figures 1 and 2 compare theoretical predictions of the number of samples n and the number
of bits M, necessary to identify the most likely face of a particular die versus the actual
requirements obtained from 1000 games (3000 tosses of the die in each game). The die has
five faces with probabilities P(w,;) = 0.37, P(wp) = 0.28, P(w,;3) = 0.2, P(ws) = 0.1, and
P(wr1) = 0.05. The theoretical predictions for M, and n (arrows with boxed labels based
on iterative searches employing equations (17) and (19)) that would with 0.95 confidence
correctly identify the most likely die face w,; are shown to correspond with the empirical
results: in figure 1 the empirical 0.95 confidence interval is marked by the lower bound of
the dark gray and the upper bound of the light gray; in figure 2 the empirical 0.95 confidence
interval is marked by the lower bound of the f’(wrl) distribution and the upper bound of the
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Figare 1: Theoretical predictions of the  Figure 2: Theoretical predictions of the
number of tosses nceded to identify the  number of tosses needed to identify the
most likely face w,; with 95% confidence most likely face w,; with 95% confidence
(Die 1): Differential strategy prediction su- (Die 1): Probabilistic strategy prediction
perimposed on empirical results of 1000  superimposed on empirical results of 1000
games (3000 tosses each). games (3000 tosses each).

P(wn) distribution. These figures illustrate that the differential strategy’s minimum SCP
is 227 (n = 227, M, = 1) while the minimum SCP for the probabilistic strategy is 2720
(n=544,M,=5). A complete tabulation of SCP as a function of P(w,1) , P(wy2) , and the
worst-case choice for C (the number of classes/die faces) is given in [1].

3 Conclusion

The sample complexity product (SCP) notion of functional complexity set forth herein is
closely aligned with the complexity measures of Kolmogorov and Rissanen [4, 6]. We have
used it to prove that the differential strategy for learning the Bayesian discriminant function
is optimal in terms of its minimum requirements for classifier functional complexity and
number of training examples when the classification task is identifying the most likely face
of an unfair die. It is relatively straightforward to extend theorem 1 and its corollaries to
the general pattern recognition case in order to show that the expected SCP for the 1-bit
differential strategy

E [SCP)ugerentiat = /X Mmin [P (w1 | X) , P (w2 | X)] ‘i‘{q min [P (w1 |X), P (w2 lx)]lp(x)dx

=1

(21)
(or the discrete random vector analog of this equation) is minimal [1]. This is because 7nmin
is by corollary 2 the smallest sample size necessary to distinguish any and all P(w,;) from
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lesser P(wy) . The resulting analysis confirms that the classifier trained with the differential
strategy for statistical pattern recognition (i.e., using a CFM,,,,, Objective function) has
the highest probability of learning the Bayesian discriminant function when the functional
capacity of the classifier and the available training data are both limited.

The relevance of this work to the process of designing and training robust connec-
tionist pattern classifiers is evident if one considers the practical meaning of the terms
min [P (wr1 |X) , P (wr2 | X)] and My min [P (wr1 |X) , P (w2 |x)] in the sample complex-
ity product of (21). Given one’s choice of connectionist model to employ as a classifier, the
M, min term dictates the minimum necessary connectivity of that model. For example, (21)
can be used to prove that a partially connected radial basis function (RBF) with trainable
variance parameters and three hidden layer “nodes” has the minimum M, necessary for
Bayesian discrimination in the 3-class task described by [5]). However, because both SCP
terms are functions of the probabilistic nature of the random feature vector being classified
and the learning strategy employed, that minimal RBF architecture will only yield Bayesian
discrimination if trained using the differential strategy. The probabilistic strategy requires
significantly more functional complexity in the RBF in order to meet the requirements
of the probabilistic strategy’s SCP [1]. Philosophical arguments regarding the use of the
differential strategy in lieu of the more traditional probabilistic strategy are discussed at

length in [1].
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