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Abstract 

We have investigated the properties of neurons in inferior temporal (IT) 
cortex in monkeys performing a pattern matching task. Simple back­
propagation networks were trained to discriminate the various stimulus 
conditions on the basis of the measured neuronal signal. We also trained 
networks to predict the neuronal response waveforms from the spatial pat­
terns of the stimuli. The results indicate t.hat IT neurons convey tempo­
rally encoded information about both current and remembered patterns, 
as well as about their behavioral context. 
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1 INTRODUCTION 

Anatomical and neurophysiological studies suggest that there is a cortical pathway 
specialized for visual object recognition, beginning in the primary visual cortex 
and ending in the inferior temporal (IT) cortex (Ungerleider and Mishkin, 1982). 
Studies of IT neurons in awake behaving monkeys have found that visually elicited 
responses depend on the pattern of the stimulus and on the behavioral context of 
the stimulus presentation (Richmond and Sato, 1987; Miller et aI, 1991). Until now, 
however, no attempt had been made to quantify the temporal pattern of firing in 
the context of a behaviorally complex task such as pattern recognition. 

Our goal was to examine the information present in IT neurons about visual stimuli 
and their behavioral context. We explicitly allowed for the possibility that this 
information was encoded in the temporal pattern of the response. To decode the 
responses, we used simple feed-forward networks trained by back propagation. 

In work reported elsewhere (Eskandar et al, 1991) this information is calculated 
another way, with similar results. 

2 THE EXPERIMENT 

Two monkeys were trained to perform a sequent.ial nonmatch to sample task using 
a complete set of 32 black-and-white patterns based on 2-D Walsh functions. \\'hile 
the monkey fixated and grasped a bar, a sample pattern appeared for 352 msecs; 
after a pause of 500 msecs a test stimulus appeared for 352 msecs. The monkey 
indicated whether the test stimulus failed to match the sample stimulus by releasing 
the bar. (If the test matched the stimulus, the monkey waited for a third stimulus, 
different from the sample, before releasing the bar; see Fig. 1.) 

SAMPLE MATCH 
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~----------~~----------~, -----------_ . 
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I----_ _+_, ____________ • 

INTER-TRIAL lNTER-STIMULUS REWARD 

Figure 1: The nonmatch-to-sample task. 
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The type of trial (match or nonmatch) and t.he pairings of sample stimuli with 
nonmatch stimuli were selected randomly. A single experiment usually contained 
several thousand trials; thus each of the 32 patterns appeared repeatedly under the 
three conditions (sample, match, and nonmatch). Single neuron recordings from IT 
cortex were carried out while the monkeys were performing the task. 
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Figure 2: Responses produced by 2 stimuli under 3 behavioural condit.ions. 

Fig. 2 shows the neuronal signals produced by two different stimulus patterns in 
the three behavioural conditions: sample, match and nonmatch. The lower parts 
of the figure show single-trial spike trains, while the upper parts show the effective 
time-dependent firing probabilities, inferred from the spike trains by convolving 
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each spike with a Gaussian kernel, adding these up for each trial and averaging the 
resulting continuous signals over trials. It is evident that for a given stimulus pattern 
the average signals produced in different behavioural conditions are different. In 
v,,-hat follows, we proceed further to show that there is information about behavioural 
condition in the signal produced in a single trial. vVe will compute its average value 
explicitly. 

3 DECODING NETWORKS 

To compute this information we trained networks to decode the measured signal. 
The form of the network is shown in Fig. 3. 

spike 
trains 

principal 
components 

hidden 
units 

output 

Figure 3: Network to decode neuronal signals for information about behavioural 
condition. 

The first two layers of t he network shown preprocess the spike trains as follows: We 
begin with the spikes measured in an interval starting 90 msec after the stimulus 
onset and lasting 255 msec. First each spike is convolved with a Gaussian kernel 
to produce a continuous signal. This signal is sampled at 4-msec intervals, giving a 
54-dimensional input vector. In the second step this input vector is compressed by 
throwing out all hut a small number of its principal components (PC's). The PC 
basis was obtained by diagonalizing the 54 x 54 covariance matrix of the inputs 
computed over all trials in the experiment. The remaining PC's are then the input 
to the rest of the net work, which is a standard one with one further hidden layer. 
Earlier work showed that the first five PC's transmit most of the pattern information 
in a neuronal response (Richmond et aI, 1987). Furthermore, the first PC is highly 
correlated with the spike count. Thus, our subsequent analysis was either on the 
first PC alone, as a measure of spike count, or on the first five PC's, as a measure 
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that incorporates temporal modulation. 

We trained the networks to make pairwise discriminations between responses 
measured under different conditions (sample-match, sample-non match , or match­
nonmatch). Thus there is a single output unit, and the target is a 1 or 0 according 
to the behavioural condition under which that spike train was measured. 

The final two layers of the network were trained by standard backpropa.gation of 
errors for the cross-entropy cost function 

(1 ) 

where TIJ is the target and OIA the network output produced by the input vector 
xiJ for training example J-l. The output of the network with the weights that result 
from this training is then the optimal estimate (given the chosen architecture) of 
the probability of a behavioural condition, given the measured neuronal signal used 
as input. The number of hidden units was adjusted to minimize the generalization 
error, which was computed on one quarter of the data that was reserved for this 
purpose. 

We then calculated the mean equivocation, 

f = -(O(x) log(O(x) + [1 - O(x)] log[l - O(x)])x, (2) 

where O(x) is the value of the output unit for input x and the average is over all 
inputs. (Vie calculated this by averagng over the test or training sets; the results 
were not sensitive to which one we chose.) The equivocation is a measure of the 
neuron's uncertainty with respect to a given discrimination. From it we can compute 
the transmitted information 

I = Ia priori - f = 1 - f. (3) 

The last equality follows because in our data sets the two conditions always occur 
equally often. 

It is evident from Fig. 2 that if we already know that our signal is produced by a 
particular st.imulus pattern, the discrimination of the behavioural condition will be 
easier than if we do not possess this a priori knowledge. This is because the signal 
varies with stimulus as well as behavioural condition (more strongly, in fact), and 
the dependence on the latter has to be sorted out from that on the former. To 
get an idea of the effect of this "distraction", we performed 4 separate calculations 
for each of the 3 behavioural-condition discriminations, using 1, 4, 8, and all 32 
stimulus patterns, respectively. 

The results are summarized in Fig. 4, which shows the transmitted information 
about the 3 different behavioural-condition discriminations at the various levels of 
distraction, averaged over 5 cells. It. also indicates how much of the tra.nsmitted 
information in each case is contained in the spike count alone (i.e. the first PC of 
the signal). 

It is apparent that measurable information about behavioural condition is present 
in a single neuronal response, even in the total absence of a priori information about 
the stimulus pattern. It is also evident that most of this information is contained in 
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Figure 4: Transmitted information for the three behavioural discriminations with 
different numbers of patterns. The lower white region on each bar shows the infor­
mation transmit.ted in the first PC alone. 

the time-dependence of the firing: the information cont.ained in the first PC of the 
signal is significantly less (paired t-test p < 0.001) and was barely out of the noise. 

A finite data set can lead to a biased estimate of the transmitted information (Op­
tican et aI, 1991). In order to control for this we made a preliminary study of 
the dependence of the calculated equivocation on training set size. We varied the 
number of trials available to the network in a range (64 - 1024) for one pair of 
discriminations (sample vs. nonmatch). The calculated apparent equivocation in­
creased with the sample size N, indicating a small-sample bias. The best correlation 
(Pearson r = -0.86) was obtained with a fit of the form: 

feN) = foo - CN- 1/ 2 (c> 0). (4) 
This gives us a systematic way to estimate the small-sample bias and thus provide an 
improved estimate foo of the true equivocation. Details will be reported elsewhere. 

4 PREDICTING NEURONAL RESPONSES 

In a second set of analyses, we examined the neuronal encoding of both current and 
recalled patterns. The networks were trained to predict the neuronal response (as 
represented by its first 5 PC's) from the spatial pattern of the current non match 
stimulus, that of the immediately preceding sample stimulus, or both. The inputs 
were the pixel values of the patterns. 

The network is shown in Fig. 5. In order to avoid having different architectures for 
predictions from one and two input patterns, we always used a number of input units 
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equal to twice the number of pixels in the input. In the case where the prediction 
was to be made on the basis of both previous and current patterns, each pattern 
was fed into half the input units. For prediction from just one pattern (either the 
current or previous one), the single input pixel array was loaded separately onto 
both halves of the input array. As in the previous analyses, the number of hidden 
units was fixed by testing on a quarter of the data held out of the training set for 
this purpose. 

/' 

[]: --...... 
--.... 

"-
~ 

/' ~ 

~: ~ 

"-

Figure 5: Network for predicting neuronal responses from the stimulus. The inputs 
are pixel values of the stimuli (see text), and the targets are the first 5 PC's of the 
measured response. 

We performed this analysis on data from 6 neurons. Not surprisingly, the predicted 
waveforms were better when the input was the current pattern (normalized mean 
square error (mse) = 0.482) than when it was the previous pattern (mse = 0.589). 
However, the best prediction was obtained when the input reflected both the current 
and previous patterns (mse = 0.422) . Thus the neurons we analyzed conveyed 
information about both remembered and current stimuli . 

5 CONCLUSION 

The results presented here demonstrate the utilit.y of connectionist networks in ana­
lyzing neuronal information processing. \Ve have shown that temporally modulated 
responses in IT cortical neurons convey information about both spatial patterns and 
behavioral context. The responses also convey information about the patterns of 
remembered stimuli. Based on these results , we hypothesize that inferior temporal 
neurons playa role in comparing visual patterns with those presented at an earlier 
time. 
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