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Abstract 

The method of Structural Risk Minimization refers to tuning the capacity 
of the classifier to the available amount of training data. This capac­
ity is influenced by several factors, including: (1) properties of the input 
space, (2) nature and structure of the classifier, and (3) learning algorithm. 
Actions based on these three factors are combined here to control the ca­
pacity of linear classifiers and improve generalization on the problem of 
handwritten digit recognition. 

1 RISK MINIMIZATION AND CAPACITY 

1.1 EMPIRICAL RISK MINIMIZATION 

A common way of training a given classifier is to adjust the parameters w in the 
classification function F( x, w) to minimize the training error Etrain, i.e. the fre­
quency of errors on a set of p training examples. Etrain estimates the expected risk 
based on the empirical data provided by the p available examples. The method is 
thus called Empirical Risk Minimization. But the classification function F(x, w*) 
which minimizes the empirical risk does not necessarily minimize the generalization 
error, i.e. the expected value of the risk over the full distribution of possible inputs 
and their corresponding outputs. Such generalization error Egene cannot in general 
be computed, but it can be estimated on a separate test set (Ete$t). Other ways of 
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estimating Egene include the leave-one-out or moving control method [Vap82] (for 
a review, see [Moo92]). 

1.2 CAPACITY AND GUARANTEED RISK 

Any family of classification functions {F(x, w)} can be characterized by its capacity. 
The Vapnik-Chervonenkis dimension (or VC-dimension) [Vap82] is such a capacity, 
defined as the maximum number h of training examples which can be learnt without 
error, for all possible binary labelings. The VC-dimension is in some cases simply 
given by the number of free parameters of the classifier, but in most practical cases 
it is quite difficult to determine it analytically. 

The VC-theory provides bounds. Let {F(x, w)} be a set of classification functions 
of capacity h. With probability (1 - 71), for a number of training examples p > h, 

simultaneously for all classification functions F{x, w), the generalization error Egene 
is lower than a guaranteed risk defined by: 

Eguarant = Etrain + ((p, h, Etrain, 71) , (1) 

where ((p, h, Etrain, 71) is proportional to (0 = [h(ln2p/h+ 1) - 71l/p for small Etrain, 

and to Fa for Etrain close to one [Vap82,Vap92]. 

For a fixed number of training examples p, the training error decreases monoton­
ically as the capacity h increases, while both guaranteed risk and generalization 
error go through a minimum. Before the minimum, the problem is overdetermined: 
the capacity is too small for the amount of training data. Beyond the minimum 
the problem is underdetermined. The key issue is therefore to match the capacity 
of the classifier to the amount of training data in order to get best generalization 
performance. The method of Structural Risk Minimization (SRM) [Vap82,Vap92] 
provides a way of achieving this goal. 

1.3 STRUCTURAL RISK MINIMIZATION 

Let us choose a family of classifiers {F(x, w)}, and define a structure consisting of 
nested subsets of elements of the family: S1 C S2 c ... C Sr c .... By defining 
such a structure, we ensure that the capacity hr of the subset of classifiers Sr is less 
than hr+l of subset Sr+l. The method of SRM amounts to finding the subset sopt 

for which the classifier F{x, w*) which minimizes the empirical risk within such 
subset yields the best overall generalization performance. 

Two problems arise in implementing SRM: (I) How to select sopt? (II) How to find 
a good structure? Problem (I) arises because we have no direct access to Egene. 

In our experiments, we will use the minimum of either E te3t or Eguarant to select 
sopt, and show that these two minima are very close. A good structure reflects the 
a priori knowledge of the designer, and only few guidelines can be provided from the 
theory to solve problem (II). The designer must find the best compromise between 
two competing terms: Etrain and i. Reducing h causes ( to decrease, but Etrain 

to increase. A good structure should be such that decreasing the VC-dimension 
happens at the expense of the smallest possible increase in training error. We now 
examine several ways in which such a structure can be built. 
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2 PRINCIPAL COMPONENT ANALYSIS, OPTIMAL 
BRAIN DAMAGE, AND WEIGHT DECAY 

Consider three apparently different methods of improving generalization perfor­
mance: Principal Component Analysis (a preprocessing transformation of input 
space) [The89], Optimal Brain Damage (an architectural modification through 
weight pruning) [LDS90], and a regularization method, Weight Decay (a modifi­
cation of the learning algorithm) [Vap82]. For the case of a linear classifier, these 
three approaches are shown here to control the capacity of the learning system 
through the same underlying mechanism: a reduction of the effective dimension of 
weight space, based on the curvature properties of the Mean Squared Error (M SE) 
cost function used for training. 

2.1 LINEAR CLASSIFIER AND MSE TRAINING 

Consider a binary linear classifier F(x, w) = (}o(wT x), where wT is the transpose of 
wand the function {}o takes two values 0 and 1 indicating to which class x belongs. 
The VC-dimension of such classifier is equal to the dimension of input space 1 (or 
the number of weights): h = dim(w) = dim(x) = n. 

The empirical risk is given by: 

p 

Etrain = ! L(yk - {}o(wT xk»2 , 

p k=l 

(2) 

where xk is the kth example, and yk is the corresponding desired output. The 
problem of minimizing Etrain as a function of w can be approached in different 
ways [DH73], but it is often replaced by the problem of minimizing a Mean Square 
Error (MSE) cost function, which differs from (2) in that the nonlinear function (}o 
has been removed. 

2.2 CURVATURE PROPERTIES OF THE MSE COST FUNCTION 

The three structures that we investigate rely on curvature properties of the M S E 
cost function. Consider the dependence of MSE on one of the parameters Wi. 

Training leads to the optimal value wi for this parameter. One way of reducing 
the capacity is to set Wi to zero. For the linear classifier, this reduces the VC­
dimension by one: h' = dim(w) - 1 = n - 1. The MSE increase resulting from 
setting Wi = 0 is to lowest order proportional to the curvature of the M SEat wi. 
Since the decrease in capacity should be achieved at the smallest possible expense in 
M S E increase, directions in weight space corresponding to small M S E curvature 
are good candidates for elimination. 

The curvature of the M S E is specified by the Hessian matrix H of second derivatives 
of the M SE with respect to the weights. For a linear classifier, the Hessian matrix is 
given by twice the correlation matrix of the training inputs, H = (2/p) 2:~=1 xkxkT. 
The Hessian matrix is symmetric, and can be diagonalized to get rid of cross terms, 

1 We assume, for simplicity, that the first component of vector x is constant and set to 
1, so that the corresponding weight introduces the bias value. 
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to facilitate decisions about the simultaneous elimination of several directions in 
weight space. The elements of the Hessian matrix after diagonalization are the 
eigenvalues Ai; the corresponding eigenvectors give the principal directions wi of 
the MSE. In the rotated axis, the increase IlMSE due to setting w: = 0 takes a 
simple form: 

(3) 

The quadratic approximation becomes an exact equality for the linear classifier. 
Principal directions wi corresponding to small eigenvalues Ai of H are good candi­
dates for elimination. 

2.3 PRINCIPAL COMPONENT ANALYSIS 

One common way of reducing the capacity of a classifier is to reduce the dimension 
of the input space and thereby reduce the number of necessary free parameters 
(or weights). Principal Component Analysis (PCA) is a feature extraction method 
based on eigenvalue analysis. Input vectors x of dimension n are approximated by a 
linear combination of m ~ n vectors forming an ortho-normal basis. The coefficients 
of this linear combination form a vector x' of dimension m. The optimal basis in 
the least square sense is given by the m eigenvectors corresponding to the m largest 
eigenvalues of the correlation matrix of the training inputs (this matrix is 1/2 of H). 
A structure is obtained by ranking the classifiers according to m. The VC-dimension 
of the classifier is reduced to: h' = dim(x/) = m. 

2.4 OPTIMAL BRAIN DAMAGE 

For a linear classifier, pruning can be implemented in two different but equivalent 
ways: (i) change input coordinates to a principal axis representation, prune the 
components corresponding to small eigenvalues according to PCA, and then train 
with the M SE cost function; (ii) change coordinates to a principal axis represen­
tation, train with M S E first, and then prune the weights, to get a weight vector 
w' of dimension m < n. Procedure (i) can be understood as a preprocessing, 
whereas procedure (ii) involves an a posteriori modification of the structure of the 
classifier (network architecture). The two procedures become identical if the weight 
elimination in (ii) is based on a 'smallest eigenvalue' criterion. 

Procedure (ii) is very reminiscent of Optimal Brain Damage (OBD), a weight prun­
ing procedure applied after training. In OBD, the best candidates for pruning are 
those weights which minimize the increase IlM SE defined in equation (3). The m 
weights that are kept do not necessarily correspond to the largest m eigenvalues, 
due to the extra factor of (wi*)2 in equation (3). In either implementation, the 
VC-dimension is reduced to h' = dim(w/) = dim(x/) = m. 

2.5 WEIGHT DECAY 

Capacity can also be controlled through an additional term in the cost function, to 
be minimized simultaneously with Al S E. Linear classifiers can be ranked according 
to the norm IIwll2 = L1=1 wJ of the weight vector. A structure is constructed 
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by allowing within the subset Sr only those classifiers which satisfy IIwll2 < Cr. 

The positive bounds Cr form an increasing sequence: Cl < C2 < '" < Cr < ... 
This sequence can be matched with a monotonically decreasing sequence of positive 
Lagrange multipliers 11 ~ 12 ~ .. . ~ Ir > ... , such that our training problem stated 
as the minimization of M S E within a specific set Sr is implemented through the 
minimization of a new cost function: MSE + 'rllwIl 2 • This is equivalent to the 
Weight Decay procedure (WD). In a mechanical analogy, the term ,rllwll2 is like 
the energy of a spring of tension Ir which pulls the weights to zero. As it is easier to 
pull in the directions of small curvature of the MSE, WD pulls the weights to zero 
predominantly along the principal directions of the Hessian matrix H associated 
with small eigenvalues. 

In the principal axis representation, the minimum w-Y of the cost function 
MSE + ,lIwIl2, is a simple function of the minimum wO of the MSE in the 
I -+ 0+ limit: wI = w? Ad(Ai + I)' The weight w? is attenuated by a factor 
Ad (Ai + I)' Weights become negligible for I ~ Ai, and remain unchanged for 
I «: Ai· The effect of this attenuation can be compared to that of weight pruning. 
Pruning all weights such that Ai < I reduces the capacity to: 

n 

h' = L: 8-y(Ai) , (4) 
i=1 

where 8-y(u) = 1 if U > I and 8-y(u) = 0 otherwise. 

By analogy, we introduce the Weight Decay capacity: 

h' = t Ai . 
i=1 Ai + I 

(5) 

This expression arises in various theoretical frameworks [Moo92,McK92]' and is 
valid only for broad spectra of eigenvalues. 

3 SMOOTHING, HIGHER-ORDER UNITS, AND 
REGULARIZATION 

Combining several different structures achieves further performance improvements. 
The combination of exponential smoothing (a preprocessing transformation of input 
space) and regularization (a modification of the learning algorithm) is shown here to 
improve character recognition . The generalization ability is dramatically improved 
by the further introduction of second-order units (an architectural modification). 

3.1 SMOOTHING 

Smoothing is a preprocessing which aims at reducing the effective dimension of 
input space by degrading the resolution: after smoothing, decimation of the inputs 
could be performed without further image degradation. Smoothing is achieved here 
through convolution with an exponential kernel: 

Lk Ll PIXEL(i + k,j + I) exp[-~Jk2 + 12] 
BLURRED.PIXEL(i,j) = IJ ' Lk Ll exp[-fj k2 + 12] 
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where {3 is the smoothing parameter which determines the structure. 

Convolution with the chosen kernel is an invertible linear operation. Such prepro­
cessing results in no capacity change for a MSE-trained linear classifier. Smoothing 
only modifies the spectrum of eigenvalues and must be combined with an eigenvalue­
based regularization procedure such as OBD or WD, to obtain performance improve­
ment through capacity decrease. 

3.2 HIGHER-ORDER UNITS 

Higher-order (or sigma-pi) units can be substituted for the linear units to get poly­
nomial classifiers: F(x, w) = 6o(wTe(x)), where e(x) is an m-dimensional vector 
(m > n) with components: x}, X2, ... , Xn , (XIXt), (XIX2), .•• , (xnxn ), ••• , (X1X2 ••. Xn) . 
The structure is geared towards increasing the capacity, and is controlled by the or­
der of the polynomial: Sl contains all the linear terms, S2 linear plus quadratic, etc. 
Computations are kept tractable with the method proposed in reference [Pog75]. 

4 EXPERIMENTAL RESULTS 

Experiments were performed on the benchmark problem of handwritten digit recog­
nition described in reference [GPP+S9]. The database consists of 1200 (16 x 16) 
binary pixel images, divided into 600 training examples and 600 test examples. 

In figure 1, we compare the results obtained by pruning inputs or weights with 
PCA and the results obtained with WD. The overall appearance of the curves is 
very similar. In both cases, the capacity (computed from (4) and (5)) decreases as 
a function of r, whereas the training error increases. For the optimum value r*, 
the capacity is only 1/3 of the nominal capacity, computed solely on the basis of 
the network architecture. At the price of some error on the training set, the error 
rate on the test set is only half the error rate obtained with r = 0+ . 

The competition between capacity and training error always results in a unique 
minimum of the guaranteed risk (1). It is remarkable that our experiments show 
the minimum of Eguarant coinciding with the minimum of E te1t • Any of these two 
quantities can therefore be used to determine r*. In principle, another independent 
test set should be used to get a reliable estimate of Egene (cross-validation). It 
seems therefore advantageous to determine r* using the minimum of Eguarant and 
use the test set to predict the generalization performance. 

Using Eguarant to determine r* raises the problem of determining the capacity of the 
system. The capacity can be measured when analytic computation is not possible. 
Measurements performed with the method proposed by Vapnik, Levin, and Le Cun 
yield results in good agreement with those obtained using (5). The method yields 
an effective VC·dimension which accounts for the global capacity of the system, 
including the effects of input data, architecture, and learning algorithm 2. 

2 Schematically, measurements of the effective VC.dimension consist of splitting the 
training data into two subsets. The difference between Etrain in these subsets is maxi­
mized. The value of h is extracted from the fit to a theoretical prediction for such maximal 
discrepancy. 
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Figure 1: Percent error and capacity h' as a function of log r (linear classifier, no 
smoothing): (a) weight/input pruning via peA (r is a threshold), (b) WD (r is the 
decay parameter). The guaranteed risk has been rescaled to fit in the figure. 
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Table 1: Eteat for Smoothing, WD, and Higher-Order Combined. 

I (3 II "I II 13t order I 2nd order I 
0 "1* 6.3 1.5 
1 "1* 5.0 0.8 
2 "1* 4.5 1.2 
10 'Y'~ 4.3 1.3 

any 0+ 12.7 3.3 

In table 1 we report results obtained when several structures are combined. Weight 
decay with 'Y = "1* reduces E te3t by a factor of 2. Input space smoothing used in 
conjunction with WD results in an additional reduction by a factor of 1.5. The 
best performance is achieved for the highest level of smoothing, (3 = 10, for which 
the blurring is considerable. As expected, smoothing has no effect in the absence 
ofWD. 

The use of second-order units provides an additional factor of 5 reduction in Ete3t • 

For second order units, the number of weights scales like the square of the number 
of inputs n2 = 66049. But the capacity (5) is found to be only 196, for the optimum 
values of "I and (3. 

5 CONCLUSIONS AND EPILOGUE 

Our results indicate that the VC-dimension must measure the global capacity of 
the system. It is crucial to incorporate the effects of preprocessing of the input data 
and modifications of the learning algorithm. Capacities defined solely on the basis 
of the network architecture give overly pessimistic upper bounds. 

The method of SRM provides a powerful tool for tuning the capacity. We have 
shown that structures acting at different levels (preprocessing, architecture, learn­
ing mechanism) can produce similar effects. We have then combined three different 
structures to improve generalization. These structures have interesting comple­
mentary properties. The introduction of higher-order units increases the capacity. 
Smoothing and weight decay act in conjunction to decrease it. 

Elaborate neural networks for character recognition [LBD+90,GAL +91] also incor­
porate similar complementary structures. In multilayer sigmoid-unit networks, the 
capacity is increased through additional hidden units. Feature extracting neurons 
introduce smoothing, and regularization follows from prematurely stopping training 
before reaching the M S E minimum. When initial weights are chosen to be small, 
this stopping technique produces effects similar to those of weight decay. 
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