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Abstract 

The subject of this paper is the integration of multi-layered Artificial Neu­
ral Networks (ANN) with probability density functions such as Gaussian 
mixtures found in continuous density Hidden Markov Models (HMM). In 
the first part of this paper we present an ANN/HMM hybrid in which 
all the parameters of the the system are simultaneously optimized with 
respect to a single criterion. In the second part of this paper, we study 
the relationship between the density of the inputs of the network and the 
density of the outputs of the networks. A few experiments are presented 
to explore how to perform density estimation with ANNs. 

1 INTRODUCTION 

This paper studies the integration of Artificial Neural Networks (ANN) with prob­
ability density functions (pdf) such as the Gaussian mixtures often used in contin­
uous density Hidden Markov Models. The ANNs considered here are multi-layered 
or recurrent networks with hyperbolic tangent hidden units. Raw or preprocessed 
data is fed to the ANN, and the outputs of the ANN are used as observations for 
a parametric probability density function such as a Gaussian mixture. One may 
view either the ANN as an adaptive preprocessor for the Gaussian mixture, or the 
Gaussian mixture as a statistical postprocessor for the ANN. A useful role for the 
ANN would be to transform the input data so that it can be more efficiently mod­
eled by a Gaussian mixture . An interesting situation is one in which most of the 
input data points can be described in a lower dimensional space. In this case, it 
is desired that the ANN learns the possibly non-linear transformation to a more 
compact representation. 
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In the first part of this paper, we briefly describe a hybrid of ANNs and Hid­
den Markov Models (HMM) for continuous speech recognition. More details on 
this system can be found in (Bengio 91). In this hybrid, all the free parameters 
are simultaneously optimized with respect to a single criterion. In recent years, 
many related combinations have been studied (e.g., Levin 90, Bridle 90, Bourlard 
& Wellekens 90). These approaches are often motivated by observed advantages and 
disadvantages of ANNs and HMMs in speech recognition (Bourlard & Wellekens 89, 
Bridle 90). Experiments of phoneme recognition on the TIMIT database with the 
proposed ANN /HMM hybrid are reported. The task under study is the recogni­
tion (or spotting) of plosive sounds in continuous speech. Comparative results on 
this task show that the hybrid performs better than the ANN alone, better than 
the ANN followed by a dynamic programming based postprocessor using duration 
constraints, and better than the HMM alone. Furthermore, a global optimization 
of all the parameters of the system also yielded better performance than a separate 
optimization. 

In the second part of this paper, we attempt to extend some of the findings of the 
first part, in order to use the same basic architecture (ANNs followed by Gaussian 
mixtures) to perform density estimation. We establish the relationship between 
the network input and output densities, and we then describe a few experiments 
exploring how to perform density estimation with this system. 

2 ANN/HMM HYBRID 

In a HMM, the likelihood of the observations, given the model, depends in a sim­
ple continuous way on the observations. It is therefore possible to compute the 
derivative of an optimization criterion C, with respect to the observations of the 
HMM. For example, one may use the criterion of the Maximum Likelihood (ML) 
of the observations, or of the Maximum Mutual Information (MMI) between the 
observations and the correct sequence. If the observation at each instant is the 
vector output, Yi, of an ANN, then one can use this gradient, gf" to optimize the 
parameters of the ANN with back-propagation. See (Bridle 90, Bottou 91, Bengio 
91, Bengio et a192) on ways to compute this gradient. 

2.1 EXPERIMENTS 

A preliminary experiment has been performed using a prototype system based on 
the integration of ANNs with HMMs. The ANN was initially trained based on 
a prior task decomposition. The task is the recognition of plosive phonemes pro­
nounced by a large speaker population. The 1988 version of the TIM IT continuous 
speech database has been used for this purpose. SI and SX sentences from regions 
2, 3 and 6 were used, with 1080 training sentences and 224 test sentences, 135 train­
ing speakers and 28 test speakers. The following 8 classes have been considered: 
/p/,/t/,/k/,/b/,/d/,/g/,/dx/,/all other phones/. Speaker-independent recognition 
of plosive phonemes in continuous speech is a particularly difficult task because 
these phonemes are made of short and non-stationary events that are often con­
fused with other acoustically similar consonants or may be merged with other unit 
segments by a recognition system. 
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Figure 1: Architecture of the ANN/HMM Hybrid for the Experiments. 

The ANNs were trained with back-propagation and on-line weight update. As dis­
cussed in (Bengio 91), speech knowledge is used to design the input, output, and 
architecture of the system and of each one of the networks. The experimental sys­
tem is based on the scheme shown in Figure 1. The architecture is built on three 
levels. The approach that we have taken is to select different input parameters and 
different ANN architectures depending on the phonetic features to be recognized. 
At levell, two ANNs are initially trained to perform respectively plosive recognition 
(ANN3) and broad classification of phonemes (ANN2). ANN3 has delays and recur­
rent connections and is trained to recognize static articulatory features of plosives 
in a way that depends of the place of articulation of the right context phoneme. 
ANN2 has delays but no recurrent connections. The design of ANN2 and ANN3 is 
described in more details in (Bengio 91). At level 2, ANNI acts.as an integrator of 
parameters generated by the specialized ANNs oflevel 1. ANNI is a linear network 
that initially computes the 8 principal components of the concatenated output vec­
tors of the lower level networks (ANN2 and ANN3). In the experiment described 
below, the combined network (ANN1+ANN2+ANN3) has 23578 weights. Level 3 
contains the HMMs, in which each distribution is modeled by a Gaussian mixture 
with 5 densities. See (Bengio et al 92) for more details on the topology of the 
HMM. The covariance matrix is assumed to be diagonal since the observations are 
initially principal components and this assumption reduces significantly the num­
ber of parameters to be estimated. After one iteration of ML re-estimation of the 
HMM parameters only, all the parameters of the hybrid system were simultane­
ously tuned to maximize the ML criterion for the next 2 iterations. Because of the 
simplicity of the implementation of the hybrid trained with ML, this criterion was 
used in these experiments. Although such an optimization may theoretically worsen 
performance1 , we observed an marked improvement in performance after the final 
global tuning. This may be explained by the fact that a nearby local maximum of 

1 In section 3, we consider maximization of the likelihood of the inpu ts of the network, 
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the likelihood is attained from the initial starting point based on prior and separate 
training of the ANN and the HMM. 

Table 1: Comparative Recognition Results. % recognized = 100 - % substitutions 
- % deletions. % accuracy = 100 - % substitutions - % deletions -% insertions. 

% rec %ms % del % subs % acc 
ANNs alone 85 32 0.04 15 53 
HMMs alone 76 6.3 2.2 22.3 69 
ANNs+DP 88 16 0.01 11 72 
ANNs+HMM 87 6.8 0.9 12 81 
ANNs+HMM+global opt. 90 3.8 1.4 9.0 86 

In order to assess the value of the proposed approach as well as the improvements 
brought by the HMM as a post-processor for time alignment, the performance 
of the hybrid system was evaluated and compared with that of a simple post­
processor applied to the outputs of the ANNs and with that of a standard dynamic 
programming postprocessor that models duration probabilities for each phoneme. 
The simple post-processor assigns a symbol to each output frame of the ANNs by 
comparing the target output vectors with actual output vectors. It then smoothes 
the resulting string to remove very short segments and merges consecutive segments 
that have the same symbol. The dynamic programming (DP) postprocessor finds 
the sequence of phones that minimizes a cost that imposes durational constraints 
for each phoneme. In the HMM alone system, the observations are the cepstrum 
and the energy of the signal, as well as their derivatives. Comparative results for 
the three systems are summarized in Table 1. 

3 DENSITY ESTIMATION WITH AN ANN 

In this section, we consider an extension of the system of the previous section. 
The objective is to perform density estimation of the inputs of the ANN. Instead 
of maximizing a criterion that depends on the density of the outputs of an ANN, 
we maximize the likelihood of inputs of the ANN. Hence the ANN is more than a 
preprocessor for the gaussian mixtures, it is part of the probability density function 
that is to be estimated. Instead of representing a pdf only with a set of spatially 
local functions or kernels such as gaussians (Silverman 86), we explore how to use 
a global transformation such as one performed by an ANN in order to represent a 

pdf. Let us first define some notation: f x (x) def p( X = x), fy (y) def p(Y = y), 

and fXIY(x)(x) def p(X = x I Y = y(x)). 

3.1 RELATION BETWEEN INPUT PDF AND OUTPUT PDF 

Theorem Suppose a random variable Y (e.g., the outputs of an ANN) is a deter­
ministic parametric function y(X) of a random variable X (here, the inputs of the 
ANN), where y and x are vectors of dimension ny and n x . Let J - 8(Yl.h.·· .Yn v) 

- 8(Xl.Xl, oo .X n .. ) 

not the outputs of the network. 
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be the Jacobian of the transformation from X to Y, and assume J = U DVt be a 
singular value decomposition of J, with s(x) =1 Il~1/ Dii 1 the product of the sin­
gular values. Suppose Y is modeled by a probability density function fy(y). Then, 
for nz >= ny and s(x) > 0 

fx(x) = fy(y(x» fXIY(x)(x) s(x) (1) 

Proof. In the case in which nz = ny, by change of variable y -- x in the following 
integral, 

1 fy(y) dy = 1 
01/ 

(2) 

we obtain the following result2 : 

fx(x) = fy(y(x» 1 Determinant(J) 1 (3) 
Let us now consider the case ny < nz , i.e., the network has less outputs than inputs. 
In order to do so we will introduce an intermediate transformation to a space Z of 
dimension nz in which some dimensions directly correspond to Y. Define Z such 
that f} Zl,Z2,···,Z.. = V t • Decompose Z into Z' and Z": 

f} Xl ,X2, . .. ,X .... 

z' = (Zl' ... , zn1/) , Z" = (Zn1/+1, ... , zn",) (4) 
There is a one-to-one mapping Yz (z') between Z' and Y, and its Jacobian is U D', 
where D' is the matrix composed of the first ny columns of D. Perform a change 
of variables y -- z' in the integral of equation 2: 

1 fy (yz (z'» s dz' = 1 (5) 
0.1 

In order to make a change of variable to the variable x, we have to specify the 
conditional pdf fXIY(x)(x) and the corresponding pdf 
p(z" 1 z') = p(z", z, 1 z') =3 p(z 1 y) =4 fXIY(X)(x). Hence we can write 

1 p(z" 1 z') dz" = 1 (6) 
0.11 

Multiplying the two integrals in equations 5 and 6, we obtain the following: 

1= 1 p(z"lz')dz" 1 fy(yz(z'»sdz'= 1 fy(yz(z')p(z"lz')sdz (7) 
0.11 0.1 o. 

and substituting z __ vtx: 

1 fy(y(x» fXIY(X)(X) s(x) dx 
0 .. 

1, (8) 

which yields to the general result of equation 1 D. 

Unfortunately, it is not clear how to efficiently evaluate fXIY(x)(x) and then com­
pute its derivative with respect to the network weights. In the experiments described 
in the next section we first study empirically the simpler case in which nx = n y • 

2in that case, 1 Determinant(l) 1= sand IXIY(x)(x) = 1. 
3knowing z' is equivalent to knowing y. 
fbecause z = Vtx and Determinant(V) = 1. 
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Figure 2: First Series of Experiments on Density Estimation with an ANN, for data 
generated on a non-linear input curve. From left to right: Input samples, density 
of the input, X, estimated with ANN+Gaussian, ANN that maps X to Y, density 
of the output, Y, as estimated by a Gaussian. 

3.2 ESTIMATION OF THE PARAMETERS 

When estimating a pdf, one can approximate the functions fy(y) and y(x) by 
parameterized functions. For example, we consider for the output pdf the class 
of densities fy (y; 8) modeled by a Gaussian mixture of a certain number of com­
ponents, where 8 is a set of means, variances and mixing proportions. For the 
non-linear transformation y(x;w) from X to Y, we choose an ANN, defined by its 
architecture and the values of its weights w. In order to choose values for the Gaus­
sian and ANN parameters one can maximize the a-posteriori (MAP) probability of 
these parameters given the data, or if no prior is known or assumed, maximize the 
likelihood (ML) of the input data given the parameters. In the preliminary exper­
iments described here, the logarithm of the likelihood of the data was maximized, 
i.e., the optimal parameters are defined as follows: 

(0, w) = argmax L log(Jx(x» 
(9,w) xeS 

(9) 

where::: is the set of inputs samples. 

In order to estimate a density with the above described system, one computes the 
derivative of p(X = x I 8,w) with respect to w. If the output pdf is a Gaussian 
mixture, we reestimate its parameters 8 with the EM algorithm (only fy (y) depends 
on 8 in the expression for f x (x) in equations 3 or 1). Differentiating equation 3 
with respect to w yields: 

8 8 '" 8 8J·· 
8w(logfx(x» = 8w(logfy(y(x;w); 8» + L...J 8J .. (log(Determinant(J») 8:: 

i,j I, 
(10) 

The derivative of the logarithm of the determinant can be computed simply as 
follows (Bottou 91): 

8~ij (log(Determinant(J») = (J-1)ji, (11) 

since VA, Determinant(A) = Ej AijCofactorij(A) ,and (A-l)ij = ~=;,;;..;;...Io~~ 
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Figure 3: Second Series of Experiments on Density Estimation with an ANN. From 
left to right: Input samples, density with non-linear net + Gaussian, output samples 
after network transformation. 

3.3 EXPERIMENTS 

The first series of experiments verified that a transformation of the inputs with 
an ANN could improve the likelihood of the inputs and that gradient ascent in 
the ML criterion could find a good solution. In these experiments, we attempt 
to model some two-dimensional data extracted from a speech database. The 1691 
training data points are shown in the left of Figure 2. In the first experiment, a 
diagonal Gaussian is used, with no ANN. In the second experiment a linear network 
and a diagonal Gaussian are used. In the third experiment, a non-linear network 
with 4 hidden units and a diagonal Gaussian are used. The average log likelihoods 
obtained on a test set of 617 points were -3.00, -2.95 and -2.39 respectively for the 
three experiments. The estimated input and output pdfs for the last experiment 
are depicted in Figure 2, with white indicating high density and black low density. 

The second series of experiments addresses the following question: if we use a 
Gaussian mixture with diagonal covariance matrix and most of the data is on a non­
linear hypersurface cI> of dimension less than nx , can the ANN's outputs separate 
the dimensions in which the data varies greatly (along ~) from those in which 
it almost doesn't (orthogonal to ~)7 Intuitively, it appears that this will be the 
case, because the variance of outputs which don't vary with the data will be close 
to zero, while the determinant of the Jacobian is non-zero. The likelihood will 
correspondingly tend to infinity. The first experiment in this series verified that 
this was the case for linear networks. For data generated on a diagonal line in 
2-dimensional space, the resulting network separated the" variant" dimension from 
the "invariant" dimension, with one of the output dimensions having near zero 
variance, and the transformed data lying on a line parallel to the other output 
dimension. 

Experiments with non-linear networks suggest that with such networks, a solution 
that separates the variant dimensions from the invariant ones is not easily found 
by gradient ascent. However, it was possible to show that such a solution was at 
a maximum (possibly local) of the likelihood. A last experiment was designed to 
demonstrate this. The input data, shown in Figure 3, was artificially generated to 
make sure that a solution existed. The network had 2 inputs, 3 hidden units and 2 
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outputs. The input samples and the input density corresponding to the weights in 
a maximum of the likelihood are displayed in Figure 3, along with the transformed 
input data for those weights. The points are projected by the ANN to a line parallel 
to the first output dimension. Any variation of the weights from that solution, in 
the direction of the gradient, even with a learning rate as small as 10-14, yielded 
either no perceptible improvement or a decrease in likelihood. 

4 CONCLUSION 

This paper has studied an architecture in which an ANN performs a non-linear 
transformation of the data to be analyzed, and the output of the ANN is modeled 
by a Gaussian mixture. The design of the ANN can incorporate prior knowledge 
about the problem, for example to modularize the task and perform an initial 
training of the sub-networks. In phoneme recognition experiments, an ANN/HMM 
hybrid based on this architecture performed better than the ANN alone or the HMM 
alone. In the second part of th paper, we have shown how the pdf of the input of 
the network relates to the pdf of the outputs of the network. The objective of this 
work is to perform density estimation with a non-local non-linear transformation of 
the data. Preliminary experiments showed that such estimation was possible and 
that it did improve the likelihood of the resulting pdf with respect to using only a 
Gaussian pdf. We also studied how this system could perform a non-linear analogue 
to principal components analysis. 
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