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We develop a sequential adaptation algorithm for radial basis function 
(RBF) neural networks of Gaussian nodes, based on the method of succes­
sive F-Projections. This method makes use of each observation efficiently 
in that the network mapping function so obtained is consistent with that 
information and is also optimal in the least L 2-norm sense. The RBF 
network with the F-Projections adaptation algorithm was used for pre­
dicting a chaotic time-series. We compare its performance to an adapta­
tion scheme based on the method of stochastic approximation, and show 
that the F-Projections algorithm converges to the underlying model much 
faster. 

1 INTRODUCTION 

Sequential adaptation is important for signal processing applications such as time­
series prediction and adaptive control in nonstationary environments. With increas­
ing computational power, complex algorithms that can offer better performance 
can be used for these tasks. A sequential adaptation scheme, called the method 
of successive F-Projections [Kadirkamanathan & Fallside, 1990], makes use of each 
observation efficiently in that, the function so obtained is consistent with that ob­
servation and is the optimal posterior in the least L 2-norm sense. 

In this paper we present an adaptation algorithm based on this method for the 
radial basis function (RBF) network of Gaussian nodes [Broomhead & Lowe, 1988]. 
It is a memory less adaptation scheme since neither the information about the past 
samples nor the previous adaptation directions are retained. Also, the observations 
are presented only once. The RBF network employing this adaptation scheme 
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was used for predicting a chaotic time-series. The performance of the algorithm is 
compared to a memoryless sequential adaptation scheme based on the method of 
stochastic approximation. 

2 METHOD OF SUCCESSIVE F-PROJECTIONS 

The principle of F-Projection [Kadirkamanathan et al., 1990J is a general method 
of choosing a posterior function estimate of an unknown function 1*, when there 
exists a prior estimate and new information about 1* in the form of constraints. 
The principle states that, of all the functions that satisfy the constraints, one should 
choose the posterior In that has the least L 2-norm, II/n - In-til, where In-l is the 
prior estimate of 1*. viz., 

In = arg min III - In- III 
J 

such that In E HI 

where H / is the set of functions that satisfy the new constraints, and 

III - In-lW = J IIf(~) - In_'(~)1I2Id£1 = D(f,/n-d 
~EC 

(1) 

(2) 

where ~ is the input vector, Id£1 is the infinitesimal volume in the input space 
domain C. 

In functional analysis theory, the metric D(., .) describes the L2-normed linear space 
of square integrable functions. Since an inner product can be defined in this space, 
it is also the Hilbert space of square integrable functions [Linz, 1984J. Constraints 
of the form Yn = I(~n) are linear in this space, and the functions that satisfy the 
constraint lie in a hyperplane subspace H /. The posterior In, obtained from the 
principle can be seen to be a projection of fn-l onto the subspace H / containing 
r, the underlying function that generates the observation set, and hence is optimal 
(i.e., best possible choice), see Figure l. 

Hilbert space 

Figure 1: Principle of F-Projection 

Neural networks can be viewed as constructing a function in its input space. The 
structure of the neural network and the finite number of parameters restrict the class 
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of functions that can be constructed to a subset of functions in the Hilbert space. 
Neural networks, therefore approximate the underlying function that describes the 
set of observations. Hence, the principle of .1"-Projection now yields a posterior 
I(fin) E HI that is an approximation of In (see Figure 1). 

The method of successive :F-Projectjons is the application of the principle of .1"­
Projection on a sequence of observations or information [Kadirkamanathan et al., 
1990]. For neural networks, the method gives an algorithm that has the following 
two steps . 

• Initialise parameters with random values or values based on a priori knowledge . 

• For each pattern (~i' Yi) i = 1 ... n, determine the posterior parameter estimate 

~ = argmJn J II/(~,!D - 1(~'~_1)1I2Id~1 
~EC 

such that I(~,~) = Yi' 

where (~i' Yi), for i = 1 ... n constitutes the observation set, ft is the neural network 
parameter set and I(~, ft) is the function constructed by the neural network. 

3 .r-PROJECTIONS FOR AN RBF NETWORK 

The class of radial basis function (RBF) neural networks were first introduced by 
Broomhead & Lowe [1988]. One such network is the RBF network of Gaussian 
nodes. The function constructed at the output node of the RBF network of Gaussian 
nodes, J(~), is derived from a set of basis functions of the form, 

i = l. .. m (3) 

Each basis function ¢i(~) is described at the output of each hidden node and is 
centered on ~ in the input space. ¢i(.~) is a function of the radial weighted distance 
between the input vector ~ and the node centre ~. In general, Ci is diagonal with 
elements [O"il, 0" 12, ... ,000iN]. 1(;,,) is a linear combination of the m basis functions. 

m 

f(~) = L ai¢i(~) (4) 
i=l 

and ~ = [ ... , ai, Il i ,Qi I ••• J is then the parameter vector for the RBF network. 

There are two reasons for developing the sequential adaptation algorithm for the 
RBF network of Gaussian nodes. Firstly, the method of successive :F-Projections is 
based on minimizing the hypervolume change in the hypersurface when learning new 
patterns. The RBF network of Gaussian nodes construct a localized hypersurface 
and therefore the changes will also be local. This results in the adaptation of a few 
nodes and therefore the algorithm is quite stable. Secondly, the L2-norm measure of 
the hypervolume change can be solved analytically for the RBF network of Gaussian 
nodes. 
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The method of successive F-Projections is developed under deterministic noise-free 
conditions. When the observations are noisy, the constraint that f(~, ~) = Yi must 
be relaxed to, 

IIf(~,~) - Yi 112 ::; f 

Hence, the sequential adaptation scheme is modified to, 

!l.n = arg min J (0) 
9 -

(5) 

(6) 

J(~) = J IIf(~,~) - f(~_1,~)1I2Id~1 + cillf(~'~i) - Yill 2 (7) 

Ci is the penalty parameter that trades off between the importance of learning the 
new pattern and losing the information of the past patterns. This minimization 
can be performed by the gradient descent procedure. The minimization procedure 
is halted when the change ~J falls below a threshold. The complete adaptation 
algorithm is as follows: 

• Choose ~o randomly 

• For each pattern (i = 1 ... P) 

• O~O) = o· 1 
~ ~-

• Repeat (Ph iteration) 

O~ Ie) = O~ Ie - 1) _ "V J I 
~ -I 7] 9=9(1,-1) 

- -. 
Until ~J(Ie) < tth 

where "V J is the gradient vector of JUt.) with respect to ~, ~J(Ie) = J(~~Ie») -
J(~~Ie-l») is the change in the cost function and tth is a threshold. Note that 
(Xi, Jli,!!..i for i = 1 ... m are all adapted. The details of the algorithm can be found 
in the report by Kadirkamanathan et a/., [Kadirkamanathan, Niranjan & Fallside, 
1991]. 

4 TIME SERIES PREDICTION 

An area of application for sequential adaptation of neural networks is the prediction 
of time-series in nonstationary environments, where the underlying model generat­
ing the time-series is time-varying. The adaptation algorithm must also result in 
the convergence of the neural network to the underlying model under stationary 
conditions. The usual approach to predicting time-series is to train the neural net­
work on a set of training data obtained from the series [Lapedes & Farber, 1987; 
Farmer & Sidorowich, 1988; Niranjan, 1991]. Our sequential adaptation approach 
differs from this in that the adaptation takes place for each sample. 

In this work, we examine the performance of the F-Projections adaptation algorithm 
for the RBF network of Gaussian nodes in predicting a deterministic chaotic series. 
The chaotic series under investigation is the logistic map [Lapedes & Farber, 1987], 
whose dynamics is governed by the equation, 

Xn = 4Xn-l(1- xn-d (8) 
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This is a first order nonlinear process where only the previous sample determines 
the value of the present sample. Since neural networks offer the capability of con­
structing any arbitrary mapping to a sufficient accuracy, a network with input nodes 
equal to the process order will find the underlying model. Hence, we use the RBF 
network of Gaussian nodes with a single input node. We are thus able to compare 
the map the RBF network constructed with that of the actual map given by eqn 
(8). 

First, RBF network with 2 input nodes and 8 Gaussian nodes was used to predict 
the logistic map chaotic series of 100 samples. Each sample was presented only once 
for training. The training was temporarily halted after 0, 20, 40, 60, 80 and 100 
samples, and in each case the prediction error residual was found. This is given in 
Figure 2 where the increasing darkness of the curves stand for the increasing number 
of patterns used for training. It is evident from this figure that the prediction model 
improves very quickly from the initial state and then slowly keeps on improving as 
the number of training patterns used is increased. 

0.5 

~.5~--~~--~----~--~~--~~--~----~----~--~----~ o 70 80 90 100 
time(samples) 

Figure 2: Evolution of prediction error residuals 

In order to compare the performance of the sequential adaptation algorithm, a mem­
oryless adaptation scheme was also used to predict the chaotic series. The scheme is 
the LMS or stochastic approximation (sequential back propagation [White, 1987]), 
where for each sample, one iteration takes place. The iteration is given by, 

fl.i = ~-l - rfv JI 
(J=(J 

(9) 
- -I 

where, 
J(fl.) = 11!(fl.,~) - ydl 2 (10) 

and JUt) is the squared prediction error for the present sample. 

Next, the RBF network with a single input node and 8 Gaussian units was used 
to predict the chaotic series. The .1'-Projections and the stochastic approximation 
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adaptation algorithms were used for training this network on 60 samples. Results 
on the map constructed by a network trained by each of these schemes for 0, 20 and 
60 samples and the samples used for training are shown in Figure 3. Again, each 
sample was presented only once for training. 
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Figure 3: Map f(x) constructed by the RBF network. (a) f-projections (b) stochastic 
approximation . 

The stochastic approximation algorithm fails to construct a close-fit mapping of 
the underlying function after training on 60 samples. The F-Projections algorithm 
however, provides a close-fit map after training on 20 samples. It also shows stability 
by maintaining the map up to training on 60 samples. The speed of convergence 
achieved, in terms of the number of samples used for training, is much higher for 
the F-Projections. 

Comparing the cost functions being minimized for the F -Projections and the 
stochastic approximation algorithms, given by eqns (7) and (10), it is clear that 
the difference is only an additional integral term in eqn (7). This term is not a 
function of the present observation, but is a function of the a priori parameter 
values. The addition of such a term is to incorporate a priori knowledge of the 
network to that of the present observation in determining the posterior parameter 
values. The faster convergence result for the F-Projections indicate the importance 
of the extended cost function . Even though the cost term for the F-Projections 
was developed for a recursive estimation algorithm, it can be applied to a block 
estimation method as well. The cost function given by eqn (7) can be seen to be an 
extension of the nonlinear least squared error to incorporate a priori knowledge. 

5 CONCLUSIONS 

The principle of F-Projection proposed by Kadirkamanathan et a/., [1990], pro­
vides an optimal posterior estimate of a function, from the prior estimate and new 
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information. Based on it, they propose a sequential adaptation scheme called, the 
method of successive I-projections. We have developed a sequential adaptation 
algorithm for the RBF network of Gaussian nodes based on this method. 

Applying the RBF network with the .1"-Projections algorithm to the prediction 
of a chaotic series, we have found that the RBF network was able to map the 
underlying function. The prediction error residuals at the end of training with 
different number of samples, indicate that, after a substantial reduction in the error 
in the initial stages, with increasing number of samples presented for training the 
error was steadily decreasing. By comparing with the performance of the stochastic 
approximation algorithm, we show the superior convergence achieved by the .1"­
Projections. 

Comparing the cost functions being minimized for the .1"-Projections and the 
stochastic approximation algorithms reveal that the .1"-Projections uses both the 
prediction error for the current sample and the a priori values of the parameters, 
whereas the stochastic approximation algorithms use only the prediction error. We 
also point out that such a cost term that includes a priori knowledge of the network 
can be used for training a trained network upon receipt of further information. 
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