
The Recurrent Cascade-Correlation Architecture 

Scott E. Fahlman 
School of Computer Science 
Carnegie Mellon University 

Pittsburgh, PA 15213 

Abstract 

Recurrent Cascade-Correlation CRCC) is a recurrent version of the Cascade­
Correlation learning architecture of Fah I man and Lebiere [Fahlman, 1990]. RCC 
can learn from examples to map a sequence of inputs into a desired sequence of 
outputs. New hidden units with recurrent connections are added to the network 
as needed during training. In effect, the network builds up a finite-state machine 
tailored specifically for the current problem. RCC retains the advantages of 
Cascade-Correlation: fast learning, good generalization, automatic construction 
of a near-minimal multi-layered network, and incremental training. 

1 THE ARCHITECTURE 

Cascade-Correlation [Fahlman, 1990] is a supervised learning architecture that builds a 
near-minimal multi-layer network topology in the course of training. Initially the network 
contains only inputs, output units, and the connections between them. This single layer of 
connections is trained (using the Quickprop algorithm [Fahlman, 1988]) to minimize the 
error. When no further improvement is seen in the level of error, the network's performance 
is evaluated. If the error is small enough, we stop. Otherwise we add a new hidden unit to 
the network in an attempt to reduce the residual error. 

To create a new hidden unit, we begin with a pool of candidate units, each of which receives 
weighted connections from the network's inputs and from any hidden units already present 
in the net. The outputs of these candidate units are not yet connected into the active network. 
Multiple passes through the training set are run, and each candidate unit adjusts its incoming 
weights to maximize the correlation between its output and the residual error in the active 
net. When the correlation scores stop improving, we choose the best candidate, freeze its 
incoming weights, and add it to the network. This process is called "tenure." After tenure, 

190 



The Recurrent Cascade-Correlation Architecture 191 

a unit becomes a permanent new feature detector in the net. We then re-train all the weights 
going to the output units, including those from the new hidden unit. This process of adding 
a new hidden unit and re-training the output layer is repeated until the error is negligible or 
we give up. Since the new hidden unit receives connections from the old ones. each hidden 
unit effectively adds a new layer to the net. 

Cascade-correlation eliminates the need for the user to guess in advance the network's 
size, depth, and topology. A reasonably small (though not minimal) network is built 
automatically. Because a hidden-unit feature detector, once built, is never altered or 
cannibalized, the network can be trained incrementally. A large data set can be broken 
up into smaller "lessons," and feature-building will be cumulative. Cascade-Correlation 
learns much faster than backprop for several reasons: First only a single layer of weights 
is being trained at any given time. There is never any need to propagate error information 
backwards through the connections, and we avoid the dramatic slowdown that is typical 
when training backprop nets with many layers. Second, this is a "greedy" algorithm: each 
new unit grabs as much of the remaining error as it can. In a standard backprop net. the all 
the hidden units are changing at once, competing for the various jobs that must be done-a 
slow and sometimes unreliable process. 

Cascade-correlation, like back-propagation and other feed-forward architectures, has no 
short-term memory in the network. The outputs at any given time are a function only of 
the current inputs and the network's weights. Of course, many real-world tasks require the 
recognition of a sequence of inputs and, in some cases, the corresponding production of a 
sequence of outputs. A number of recurrent architectures have been proposed in response 
to this need. Perhaps the most widely used, at present. is the Elman model [Elman, 1988]. 
which assumes that the network operates in discrete time-steps. The outputs of the network's 
hidden units at time t are fed back for use as additional network inputs at time-step t+ 1. These 
additional inputs can be thought of as state-variables whose contents and interpretation are 
determined by the evolving weights of the network. In effect, the network is free to choose 
its own representation of past history in the course of learning. 

Recurrent Cascade-Correlation CRCC) is an architecture that adds Elman-style recurrent 
operation to the Cascade-Correlation architecture. However, some changes were needed in 
order to make the two models fit together. In the original Elman architecture there is total 
connectivity between the state variables (previous outputs of hidden units) and the hidden 
unit layer. In Cascade-Correlation, new hidden units are added one by one, and are frozen 
once they are added to the network. It would violate this concept to insert the outputs from 
new hidden units back into existing hidden units as new inputs. On the other hand, the 
network must be able to form recurrent loops if it is to retain state for an indefinite time. 

The solution we have adopted in RCC is to augment each candidate unit with a single 
weighted self-recurrent input that feeds back that unit's own output on the previous time­
step. That self-recurrent link is trained along with the unit's other input weights to maximize 
the correlation of the candidate with the residual error. If the recurrent link adopts a strongly 
positive value, the unit will function as a flip-flop, retaining its previous state unless the 
other inputs force it to change; if the recurrent link adopts a negative value, the unit will 
tend to oscillate between positive and negative outputs on each time-step unless the other 
inputs hold it in place; if the recurrent weight is near zero, then the unit will act as a gate 
of some kind. When a candidate unit is added to the active network as a new hidden unit. 
the self-recurrent weight is frozen. along with all the other weights. Each new hidden unit 
is in effect a single state variable in a finite-state machine that is built specifically for the 



192 Fahlman 

task at hand. In this use of self-recurrent connections only, the RCC model resembles the 
"Focused Back-Propagation" algorithm of Mozer[Mozer, 1988]. 

The output, V(t), of each self-recurrent unit is computed as follows: 

V(t) = tr (~li(t)Wi + V(t - l)W') 
where q is some non-linear squashing function applied to the weighted sum of inputs 1 plus 
the self-weight, W,,' times the previous output. In the studies described here, q is always the 
hyperbolic tangent or "symmetric sigmoid" function, with a range from -1 to + 1. During the 
candidate training phase, we adjust the weights W; and w" for each unit so as to maximize 
its correlation score. This requires computing the derivative of V(t) with respect to these 
weights: 

8V(t)/Ow; = q'(t) (1;(t) + w" 8V(t - 1)/Ow;) 

8V(t)/8w" = q'(t) (V(t - 1) +w" 8V(t - 1)/Ow,,) 

The rightmost term reflects the influence of the weight in question on the unit's previous 
state. Since we computed 8V(t - 1)/Ow on the previous time-step, we can just save this 
value and use it in the current step. So the recurrent version of the learning algorithm 
requires us to store a single additional number for each candidate weight, plus V(t - 1) for 
each unit. At t = 0 we assume that the unit's previous value and previous derivatives are 
all zero. 

As an aside, the usual formulation for Elman networks treats the hidden units' previous 
values as independent inputs, ignoring the dependence of these previous values on the 
weights being adjusted. In effect, the rightmost terms in the above equations are being 
dropped, though they are not negligible in general. This rough approximation apparently 
causes little trouble in practice, but it might explain the instability that some researchers 
have reported when Elman nets are run with aggressive second-order learning procedures 
such as quickprop. The Mozer algorithm does take these extra terms into account. 

2 EMPffiICAL RESULTS: FINITE· STATE GRAMMAR 

Figure la shows the state-transition diagram for a simple finite-state grammar, called 
the Reber grammar, that has been used by other researchers to investigate learning and 
generalization in recurrent neural networks. To generate a "legal" string of tokens from 
this grammar, we begin at the left side of the graph and move from state to state, following 
the directed edges. When an edge is traversed, the associated letter is added to the string. 
Where two paths leave a single node, we choose one at random with equal probability. The 
resulting string always begins with a "B" and ends with an "E". Because there are loops 
in the graph, there is no bound on the length of the strings; the average length about eight 
letters. An example of a legal string would be "BTSSXXVPSE". 

Cleeremans, Servan-Schreiber, and McClelland [Cleeremans, 1989] showed that an Elman 
network can learn this grammar if it is shown many different strings produced by the 



The Recurrent Cascade-Correlation Architecture 193 

REBER .. / GRAMMAR 
E E 

~ REBER 
GRAMMAR 

Figure 1: State transition diagram for the Reber grammar (left) and for the embedded Reber 
grammar (right). 

grammar. The internal state of the network is zeroed at the start of each string. The letters 
in the string are then presented sequentially at the inputs of the network, with a separate 
input connection for each of the seven letters. The network is trained to predict the next 
character in the string by turning on one of the seven outputs. The output is compared to 
the true successor and network attempts to minimize the resulting errors. 

When there are two legal successors from a given state, the network will never be able to 
do a perfect job of prediction. During training, the net will see contradictory examples, 
sometimes with one successor and sometimes the other. In such cases, the net will eventually 
learn to partially activate both legal outputs. During testing, a prediction is considered 
correct if the two desired outputs are the two with the largest values. 

This task requires generalization in the presence of considerable noise. The rules defining 
the grammar are never presented-only examples of the grammar's output. Note that if the 
network can perform the prediction task perfectly, it can also be used to determine whether 
a string is a legal output of the grammar. Note also that the successor letter(s) cannot be 
determined from the current input alone; some memory of of the network's state or past 
inputs is essential. 

Cleeremans et ale report that a fixed-topology Elman net with three hidden units can learn 
this task after 60,000 distinct training strings have been presented, each used only once. A 
larger network with 15 hidden units required only 20,000 training strings. These were the 
best results obtained, not averages over a number of runs. 

RCC was given the same problem, but using a fixed set of 128 training strings, presented 
repeatedly. (Smaller string-sets had too many statistical irregularities for reliable training.) 
Ten trials were run using different training sets. In nine cases, RCC achieved perfect 
performance after building two hidden units; in the tenth, three hidden units were built. 
Average training time was 195.5 epochs, or about 25,000 string presentations. (An epoch 
is defined as a single pass through a fixed training set.) In every case, the trained network 
achieved a perfect score on a set of 128 new strings not used in training. This study used a 
pool of 8 candidate units. 

Cleeremans et ale also explored the "embedded Reber grammar" shown in figure 1 b. Each 



194 Fahlman 

of the boxes in the figure is a transition graph identical to the original Reber grammar. 
In this much harder task, the network must learn to predict the final T or P correctly. To 
accomplish this, the network must note the initial T or P and must retain this information 
while processing an "embedded clause" of arbitrary length. It is difficult to discover this 
rule from example strings, since the embedded clauses may also contain many T's and P's, 
but only the initial T or P correlates reliably with the final prediction. The "signal to noise 
ratio" in this problem is very poor. 

The standard Elman net was unable to learn this task, even with 15 hidden units and 250,000 
training strings. However, the task could be learned partially (correct prediction in about 
70% of test strings) if the two copies of the embedded grammar were differentiated by 
giving them slightly different transition probabilities. 

RCC was run six times on the more difficult symmetrical form of this problem. A candidate 
pool of 8 units was used. Each trial used a different set of 256 training strings and the 
resulting network was tested on a separate set of 256 strings. As shown in the table below, 
perfect performance was achieved in about half the trial runs, requiring 7 -9 hidden units 
and and average of 713 epochs (182K string -presentations). 1\vo of the remaining networks 
perform at the 99+% level, and one got stuck. (Trial 6 is a successful second run on the 
same test set used in trial 5.) 

Trial Hidden Epochs Tram Set Test Set 
Units Needed Errors Errors 

1 9 831 0 0 
2 7 602 0 0 
3 15 1256 0 2 
4 11 910 0 1 
5 13 1063 11 16 
6 9 707 0 0 

Smith and Zipser[Smith, 1989] have studied the same grammar-learning tasks using the 
time-continuous "Real-Time Recurrent Learning" (or "RTRL") architecture developed by 
Williams and Zipser[Williams, 1989]. They report that a network with seven visible (com­
bined input-output) units, two hidden units, and full inter-unit connectivity is able to learn 
the simple Reber grammar task after presentation of 19,000 to 63,000 distinct training 
strings. On the more difficult embedded grammar task, Smith and Zipser report that RTRL 
learned the task perfectly in some (unspecified) fraction of attempts. Successful runs ranged 
from 3 hidden units (173K distinct training strings) to 12 hidden units (25K strings). RTRL 
is able to deal with discrete or time-continuous problems, while RCC deals only in discrete 
events. On the other hand, RTRL requires more computation than RCC in processing each 
training example, and RTRL scales up poorly as network size increases. 

3 EMPIRICAL RESULTS: LEARNING MORSE CODE 

Another series of experiments tested the ability of an RCC network to learn the Morse 
code patterns for the 26 English letters. While this task requires no generalization, it 
does demonstrate the ability of this architecture to recognize a long, rather complex set of 
patterns. It also provides an opportunity to demonstrate RCC's ability to learn a new task 
in small increments. This study assumes that the dots and dashes arrive at precise times; it 
does not address the problem of variable timing. 



The Recurrent Cascade-Correlation Architecture 195 

The network has one input and 27 outputs: one for each letter and a "strobe" output 
signalling that a complete letter has been recognized. A dot is represented as a logical one 
(positive input) followed by a logical zero (negative); a dash is two ones followed by a 
zero. A second consecutive zero marks the end of the letter. When the second zero is seen 
the network must raise the strobe output and one of the other 26; at all other times. the 
outputs are zero. For example, the " ... -" pattern for the letter V would be encoded as the 
input sequence" 1010101100". The letter patterns vary considerably in length, from 3 to 12 
time-steps, with an average of 8. During training, the network's state is zeroed at the start 
of each new letter; once the network is trained. the strobe output could be used to reset the 
network. 

In one series of trials. the training set included the codes for all 26 letters at once (226 
time-steps in all). In ten trials. the network learned the task perfectly in every case, building 
an average of 10.5 hidden units and requiring an average of 1321 passes through the entire 
training set. Note that the system does not require a distinct hidden unit for each letter or 
for each time-slice in the longest sequence. 

In a second experiment, we divided the training into a series of short "lessons" of increasing 
difficulty. The network was first trained to produce the strobe output and to recognize the 
two shortest letters, E and T. This task was learned perfectly, usually with the creation of 2 
hidden units. We then set aside the "ET" set and trained successively on the following sets: 
"AIN", "DGHKRUW", "BFLOV", and "CJPQXYZ". As a rule, each of these lessons adds 
one or two new hidden units, building upon those already present. Finally we train on all 
26 characters at once, which generally adds 2-3 more units to the existing set. 

In ten trials, the incremental version learned the task perfectly every time, requiring an 
average total of 1427 epochs and 9.6 hidden units-slightly fewer than the number of units 
added in block training. While the epoch count is slightly greater than in the block-training 
experiment. most of these epochs are run on very small training sets. The incremental 
training required only about half as much total runtime as the block training. For learning 
of even more complex temporal sequences, incremental training of this kind may prove 
essential. 

Our approach to incremental training was inspired to some degree by the work reported in 
[Waibel, 1989] in which small network modules were trained separately, frozen, and then 
combined into a composite network with the addition of some "glue" units. However, in 
RCC only the partitioning of the training set is chosen by the user; the network itself builds 
the appropriate internal structure, and new units are able to build upon hidden units created 
during some earlier lesson. 

4 CONCLUSIONS 

RCC sequential processing to Cascade-Correlation, while retaining the advantages of the 
original version: fast learning, good generalization, automatic choice of network topology. 
ability to create complex high-order feature detectors, and incremental learning. The 
grammar-learning experiments suggest that RCC is more powerful than standard Elman 
networks in learning to recognize subtle patterns in sequential data. The RTRL scheme of 
Williams and Zipser may be equally powerful. but RTRL is more complex and does not 
scale up well when larger networks are needed. 

On the negative side, RCC deals in discrete time-steps and not in continuous time. An 



196 Fahlman 

interesting direction for future research is to explore the use of an RCC-like structure with 
units whose memory of past state is time-continuous rather than discrete. 

Acknowledgments 

I would like to thank Paul Gleichauf, Dave Touretzky, and Alex Waibel for their help and 
useful suggestions. This research was sponsored in part by the National Science Foundation 
(Contract EET-87 16324) and the Defense Advanced Research Projects Agency (Contract 
F33615-90-C-1465). 

References 

[Cleeremans, 1989] Cleeremans, A., D. Servan-Schreiber, and J. L. McClelland (1989) 
"Finite-State Automata and Simple Recurrent Networks" in Neural 
C ompJltation 1, 372-381. 

[Elman,1988] Elman, J. L. (1988) "Finding Structure in Time," CRL Tech Report 
8801, Univ. of California at San Diego, Center for Research in Lan­
guage. 

[Fahlman,1988] Fahlman, S. E. (1988) "Faster-Learning Variations on Back­
Propagation: An Empirical Study" in Proceedings of the 1988 Con­
nectionist Models Summer School, Morgan Kaufmann. 

[Fahlman, 1990] Fahlman, S. E. and C. Lebiere (1988) ''The Cascade-Correlation 
Learning Architecture" in D. S. Touretzky (ed.), Advances in Neu­
ral Information Processing Systems 2, Morgan Kaufmann. 

[Mozer,1988] Mozer, M. C. (1988) "A Focused Back-Propagation Algorithm for 
Temporal Pattern Recognition," Tech Report CRG-1R-88-3, Univ. of 
Toronto, Dept. of Psychology and Computer Science. 

[Smith,1989] Smith, A. W. and D. Zipser (1989) "Learning Sequential Structure 
with the Real-TIme Recurrent Learning Algorithm" in International 
Journal of Neural Systems, Vol. 1, No.2, 125-131. 

[Waibel, 1989] Waibel, A. (1989) "Consonant Recognition by Modular Construction 
of Large Phonemic TIme-Delay Neural Networks" in D. S. Touretzky 
(ed.),Advances in Neural Information Processing Systems 1, Morgan 
Kaufmann. 

[Williams,1989] Williams, R. J. and D. Zipser (1989) "A learning algorithm for con tin­
ually running fully recurrent neural networkS," Neural Computation 
1,270-280. 



Part V 

Speech 




