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We apply the theory of Tishby, Levin, and Sol1a (TLS) to two problems. 
First we analyze an elementary problem for which we find the predictions 
consistent with conventional statistical results. Second we numerically 
examine the more realistic problem of training a competitive net to learn 
a probability density from samples. We find TLS useful for predicting 
average training behavior. . 

1 TLS APPLIED TO LEARNING DENSITIES 

Recently a theory of learning has been constructed which describes the learning 
of a relation from examples (Tishby, Levin, and Sol1a, 1989), (Schwarb, Samalan, 
Sol1a, and Denker, 1990). The original derivation relies on a statistical mechanics 
treatment of the probability of independent events in a system with a specified 
average value of an additive error function. 

The resulting theory is not restricted to learning relations and it is not essentially 
statistical mechanical. The TLS theory can be derived from the principle of maz­
imum entropy, a general inference tool which produces probabilities characterized 
by certain values of the averages of specified functions(Jaynes, 1979). A TLS theory 
can be constructed whenever the specified function is additive and associated with 
independent examples. In this paper we treat the problem of learning a probability 
density from samples. 

Consider the model as some function p( z Iw) of fixed form and adjustable parameters 
w which are to be chosen to approximate 1'(z) where the overline denotes the true 
density. All we know about l' are the elements of a training set T which are drawn 
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from it. Define an error e(zlw). By the principal of maximum entropy 

1 
p(zlw)= z(.B)e-~(zIW), (1) 

can be interpreted as the unique density which contains no other information except 
a specified value of the average error 

(e) = f dz p(zlw)e(zlw). (2) 

In Equation 1 z is a normalization that is assumed to be independent of the value 
of Wj the parameter .B is called the ,en,itivity and is adjusted so that the average 
error is equal to some eT, the specified target error on the training set. We will use 
the convention that an integral operates on the entire expression that follows it. 

The usual Bayes rule produces a density in w from p(zlw) and from a prior density 
p(O)(w) which reflects at best a genuine prior probability or at least a restriction 
to the acceptable portion of the search space. Posterior to training on m certain 
examples, 

(3) 

where Zm is a normalization that depends on the particular set of examples as well 
as their number. In order to remove the effect of any particular set of examples, we 
can average this posterior density over all possible m examples 

(4) 

This average posterior density models the expected density of nets or w after train­
ing. This distribtution in w implies the followin~ expected posterior density for a 
new example Zm+l 

(5) 

TLS compare this probability in Zm+l with the true target probability to obtain 
the A verage Prediction Probability or APP after training 

(6) 

the average over both the training set z(m) and an independent test example Zm+l. 

In the averages of Equations 4 and 6 are inconvenient to evaluate exactly because of 
the Zm term in Equation 3. TLS propose an "annealed approximation" to APP in 
which the average of the ratio of Equation 4 is replaced by the ratio of the averages. 
Equation 6 becomes 

where 

p(m) = J dwp(o)(w)gm+l(w) 

J dwp(O) (w)gm (w) 

g(w) = J dzp{z)p(zlw). 

(7) 

(8) 
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Equation 7 is well suited for theoretical analysis and is also convenient for numer­
ical predictions. To apply Equation 7 numerically, we will produce Monte Carlo 
estimates for the moments of 9 that involve sampling p(O) (w). If the dimension of w 
is larger than 50, it is preferable to histogram 9 rather than evaluate the moments 
directly. 

1.1 ANALYSIS OF AN ELEMENTARY EXAMPLE 

In this section we theoretically analyze a learning problem with the TLS theory. 
We will study the adjustment of the mean of a Gaussian density to represent a 
finite number of samples. The utility of this elementary example is that it admits 
an analytic solution for the APP of the previous section. All the relevant integrals 
can be computed with the identity 

100 dz exp (-adz - bd2 - a2(z - b2)2) = ~ exp (- a1a2 (b1 - b2)2). 
-00 V~ al +a2 

We take the true density to be a Gaussian of mean wand variance 1/20 

p(z) = ~e-a(Z-iii)3. 

We model the prior density as a Gaussian with mean wo and variance 1/21' 

p(O)(w) = ~e-"(W-WO)3. 

We choose the simplest error function 

e(zlw) = (z - w)2, 

(9) 

(10) 

(11) 

(12) 

the squared error between a sample z and the Gaussian "model" defined by its 
mean w, which is to become our estimate of w. In Equation 1, this error function 
leads to 

(13) 

with z(/3) = fi which is independent of w as assumed. We determine /3 by solving 

for the error on the training set to get /3 = -21 • 
ET 

The generalization, Equation 8, can now be evaluated with Equation 9 

g(w) = ~e-"(W-iii)3, (14) 

where 
0/3 

K= , 
0+/3 

(15) 

is less than either 0 or /3. The denominator of Equation 7 becomes 

(~)m/2 ~ exp(- mK1' (w-wo)2) 
7r V~ mK+1' 

(16) 
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with a similar expression for the numerator. 

The case of many examples or little prior knowledge is interesting. Consider Equa­
tions 7 and 16 in the limit mit > > f' 

(m) = {K {Tn 
p Y;Ym+1' (17) 

which climbs to an asymptotic value of ~ for m --t 00. In order to compare this 
with intuition, consider that the sample mean of {ZlJ Z2J "'J zm} approaches w to 
within a variance of 1/2ma:, so that 

(p(m)(w))z ~ Jrn; e-ma(z-w)3 (18) 

which makes Equation 6 agree with Equation 17 for large enough {3. In this sense, 
the statistical mechanical theory of learning differs from conventional Bayesian es­
timation only in its choice of an unconventional performance criterion APP. 

2 GENERAL NUMERICAL PROCEDURE 

In this section we apply the theory to the more realistic problem of learning a 
continuous probability density from a finite sample set. We can estimate the mo­
ments of Equation 7 by the following Monte Carlo procedure. Given a training set 
T = {Zt H~r drawn from the unknown density p on domain X with finite volume V J 

an error function f( Z \w ), a training error fT J and a prior density p(O) (w) of vectors 
such that each w specifies a candidate function, 

1. Construct two sample sets: a prior set of P functions P = {wp } drawn from 
p(O)(w) and a set of U input vectors U = {zu} drawn uniformly from X. For 
each p in the prior set, tabulate the error fup = €(zulwp) for every point in U 
and the error ftp = f(Zt\Wp) for every point in T. 

2. Determine the sensitivity f3 by solving the equation (€) = €T where 

() Eu e-/J· .... fup 
f = Eu e-/J'.. . (19) 

3. Estimate the average generalization of a given wp from Equation 8 

(20) 

4. The performance after m examples is the ratio of Equation 7. By construction 
P is drawn from p(O) so that 

(21) 
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Figure 1: Predicted APP versus number of training samples for a 20-neuron com­
petitive network trained to various target errors where the neuron weights were 
initialized from (a) a uniform density, (b) an antisymmetrically skewed density. 

3 COMPETITIVE LEARNING NETS 

We consider competitive learning nets (CLNs) because they are familiar and use­
ful to us (Van den Bout and Miller, 1990), because there exist two widely known 
training strategies for CLN s (the neurons can learn either independently or under a 
global interaction called conscience (DeSieno, 1988), and because CLNs can be ap­
plied to one-dimensional problems without being too trivial. Competitive learning 
nets with conscience qualitatively change their behavior when they are trained on 
finite sample sets containing fewer examples than neurons; except for that regime 
we found the theory satisfactory. All experiments in this section were conducted 
upon the following one-dimensional training density 

15(z) = { ~!;z o <z< I, 
otherwise. 

In Figure 1 is the Average Prediction Probability (APP) for k = 20 versus m, 
for several values of target error fT and for two prior densitsities; first consider 
predictions from the uniform prior. For fT = 0.01, APP practically attains its 
asymptote of 1.5 by m = 40 examples. Assuming the APP to be dominated in 
the limit by the largest g, we expect a CLN trained to an error of 0.01 on a set of 
40 examples to perform 1.5 times better than an untrained net on unseen samples 
drawn from the same probability density. This leads to a predicted probable error 
of about 

1 
fJWob = 2 k pCm) • (22) 

For k = 20, fpf'ob = 0.017 for fT = .01 and fpt'ob = 0.021 for fT = 0.02. 

We performed 5,000 training trials of a 20-neuron CLN on randomly selected sets of 
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Figure 2: Experimentally determined and predicted values of total error across 
the training density after competitive learning was performed using a 20-neuron 
network trained to various target errors (a) with 40 samples, (b) with 20 samples. 

40 samples from the training density. Each network was trained to a target error in 
the range [0.005,0.03] on its 40 samples, and the average error on the total density 
was then calculated for the trained network. Figure 2 is a plot of 500 of these 
trials along with the predicted errors for various target errors. The probable error 
is qualitatively correct and the seatter of actual experiments increases in width by 
about the ratio of APPs for m = 20 and m = 40. For the ease of m = 20 examples, 
the same net can only be expected to exhibit probable errors of .019 and .023 for 
corresponding training target errors, which is compared graphically in Figure 2 with 
the experimentally determined errors for m = 20. 

The APP curves saturate at a value of m that is insensitive to the prior density 
from which the nets are drawn. The vertical seale does depend somewhat on the 
prior however. Consider Figure 1, which also shows the APP curves for the same 
k = 20 net with the prior density antisymmetrically skewed away from the true 
density by the following function: 

(0) {l 0 ~ W < 1, 
p (w) = OV1-W otherwise. 

For m > 20 the 6hape6 of the curves are almost unchanged, even though the vertical 
scale is different: saturation occurs at about the same value of m. Even when 
the prior greatly overrepresents poor nets, their effect on the prediction rapidly 
diminishes with training set size. This is important because in actual training, the 
effect of the initial configuration is also quickly lost. For m < 20 the predictions 
are not valid in any case, since our simple error function does not reflect the actual 
probability even approximately for m < k in these nets. It is for m < 20 where 
the only significant differences between the two families of curves occur. We have 
also been able to draw the same conclusions from less structured prior densities 
generated by assigning positive normalized random numbers to intervals of the 
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domain. Moreover, we generally find that TLS predicts that about twice as many 
samples as neurons are needed to train competitive nets of other sizes. 

4 CONCLUSION 

TLS can be applied to learning densities as well as relations. We considered the 
effects of varying the number of examples, the target training error, and the choice 
of prior density. In these experiments on learning a density as well as others dealing 
with learning a binary output (Bilbro and Snyder, 1990), a ternary output (Chow, 
Bilbro, and Yee, 1990), and a continuous output (Bilbro and Klenin, 1990) we 
find if saturation occurs for m substantially less than the total number of available 
samples, say m < ITI/2, that m is a good predictor of sufficient training set size. 
Moreover there is evidence from a reformulation of the learning theory based on the 
grand canonical ensemble that supports this statistical approach (Klenin,1990). 
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