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Abstract 

In this paper, we prove that the vectors in the LVQ learning algorithm 
converge. We do this by showing that the learning algorithm performs 
stochastic approximation. Convergence is then obtained by identifying 
the appropriate conditions on the learning rate and on the underlying 
statistics of the classification problem. We also present a modification to 
the learning algorithm which we argue results in convergence of the LVQ 
error to the Bayesian optimal error as the appropriate parameters become 
large. 

1 Introduction 

Learning Vector Quantization (LVQ) originated in the neural network community 
and was introduced by Kohonen (Kohonen [1986]). There have been extensive 
simulation studies reported in the literature demonstrating the effectiveness of LVQ 
as a classifier and it has generated considerable interest as the training times asso­
ciated with LVQ are significantly less than those associated with backpropagation 
networks. 

In this paper we analyse the convergence properties of LVQ. Using a theorem from 
the stochastic approximation literature, we prove that the update algorithm con­
verges under the suitable conditions. We also present a modification to the algo­
rithm which provides for more stable learning. Finally, we discuss the decision error 
associated with this "modified" LVQ algorithm. 
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2 A Review of Learning Vector Quantization 

Let {(Xi, dX')}~1 be the training data or past observation set. This means that Xi 

is observed when pattern dx , is in effect. We assume that the xi's are statistically 
independent (this assumption can be relaxed). Let OJ be a Voronoi vector and let 
8 = {Ol, ... , Od be the set ofVoronoi vectors. We assume that there are many more 
observations than Voronoi vectors (Duda & Hart [1973]). Once the Voronoi vectors 
are initialized, training proceeds by taking a sample (Xj, dx }) from the training set, 
finding the closest Voronoi vector and adjusting its value according to equations (1) 
and (2). After several passes through the data, the Voronoi vectors converge and 
training is complete. 

Suppose Oe is the closest vector. Adjust Oe as follows: 

Oe(n + 1) = Oe(n) - an (Xj - Oe(n)) 

if dec f::. dX1 ' The ot.her Voronoi vectors are not modified. 

(1) 

(2) 

This update has the effect that if Xj and Oe have the same decision then Oe is moved 
closer to Xj, however if they have different decisions then Oe is moved away from Xj. 

The constants {an} are positive and decreasing, e.g., an = lin. We are concerned 
with the convergence properties of 8( n) and with the resulting detection error. 

For ease of notation, we assume that there are only two pattern classes. The 
equations for the case of more than two pattern classes are given in (LaVigna 
[1989]). 

3 Convergence of the Learning Algorithm 

The LVQ algorithm has the general form 

0i(n + 1) = Oi(n) + an ,(dxn,de.(n),xn,8n) (xn - Oi(n)) (3) 

where Xn is the currently chosen past observation. The function I determines 
whether there is an update and what its sign should be and is given by 

if dXn = de, and Xn EVe, 
if dXn f::. de, and Xn EVe, 
otherwise 

Here Ve, represents the set of points closest to OJ and is given by 

Ve, = {x E ~d : IIOi - xii < IIOj - xiI, j f::. i} i = 1, ... , k. 

(4) 

(5) 

The update in (3) is a stochastic approximation algorithm (Benveniste, Metivier & 
Priouret [1987]). It has the form 

(6) 

where 8 is the vector with components OJ; H(8, z) is the vector with components 
defined in the obvious manner from (3) and Zn = (xn' dx n) is the random pair 
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consisting of the observation and the associated true pattern number. If the appro­
priate conditions are satisfied by On, H, and Zn, then 8 n approaches the solution 
of 

d - -
dt 8(t) = h(8(t)) (7) 

for the appropriate choice of h(8). 

For the two pattern case, we let PI (x) represent the density for pattern 1 and 11"1 

represent its prior. Likewise for po{x) and 11"0. It can be shown (Kohonen [1986]) 
that 

(8) 

where 

(9) 

If the following hypotheses hold then using techniques from (Benveniste, Metivier & 
Priouret [1987]) or (Kushner & Clark [1978]) we can prove the convergence theorem 
below: 

[H.1] {on} is a non increasing sequence of positive reals such that Ln an = 00, 

LnO~ < 00. 

[H.2] Given dxn , Xn are independent and distributed according to Pd:rn (x). 

[H.3] The pattern densities, Pi(X), are continuous. 

Theorem 1 Assume that [H.l]-[H.3] hold. Let 8* be a locally asymptotic stable 
equilibrium point of (7) with domain of attraction D*. Let Q be a compact subset 
of D*. If 8 n E Q for infinitely many n then 

lim 8 n = 0* a.s. 
n-oo 

( 10) 

Proof: (see (LaVigna (1989))) 

Hence if the initial locations and decisions of the Voronoi vectors are close to a 
locally asymptotic stable equilibrium of (7) and if they do not move too much then 
the vectors converge. 

Given the form of (8) one might try to use Lyapunov theory to prove convergence 
with 

K 

L(8) = L J IIx - 8il12 qi(X), dx 
i=I VIl, 

(11) 

as a candidate Lyapunov function. This function will not work as is demonstrated 
by the following calculation in the one dimensional case. Suppose that f{ = 2 and 
(h < O2 then 

{) 
-L(8) 
{)Ol 

(12) 
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• • 0 0 o 00 -00 

Figure 1: A possible distribution of observations and two Voronoi vectors. 

Likewise 

(18) 

Therefore 

~L(E»e = -h1(E»2-h2(E»2+1I(01-02)/2W Ql((Ol +(2)/2)(h 1(E»-h2 (E») (19) 

In order for this to be a Lyapunov function (19) would have to be strictly nonpositive 
which is not the case. The problem with this candidate occurs because the integrand 
qi (x) is not strictly positive as is the case for ordinary vector quantization and 
adaptive K-means. 

4 Modified LVQ AlgorithlTI 

The convergence results above require that the initial conditions are close to the 
stable points of (7) in order for the algorithm to converge. In this section we 
present a modification to the LVQ algorithm which increases the number of stable 
equilibrium for equation (7) and hence increases the chances of convergence. First 
we present a simple example which emphasizes a defect of LVQ and suggests an 
appropriate modification to the algorithm. 

Let 0 represent an observation from pattern 2 and let 6. represent an observation 
from pattern 1. We assume that the observations are scalar. Figure 1 shows a 
possible distribution of observations. Suppose there are two Voronoi vectors 01 and 
O2 with decisions 1 and 2, respectively, initialized as shown in Figure 1. At each 
update of the LVQ algorithm, a point is picked at random from the observation set 
and the closest Voronoi vector is modified. We see that during this update , it is 
possible for 02(n) to be pushed towards 00 and 01(n) to be pushed towards -00, 

hence the Voronoi vectors may not converge. 

Recall that during the update procedure in (3), the Voronoi cells are changed by 
changing the location of one Voronoi vector. After an update, the majority vote of 
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the observations in each new Voronoi cell may not agree with the decision previously 
assigned to that cell. This discrepency can cause the divergence of the algorithm. 
In order to prevent this from occuring the decisions associated with the Voronoi 
vectors should be updated to agree with the majority vote of the observations that 
fall within their Voronoi cells. Let 

g,(8; N) = { : 

1 N 1 N 

if N L I{YJE V8,lI{dyJ =1} > N L I{Y J Ev8 .}I{dyJ =2} 
j=l j=l 

otherwise. 

(20) 

Then gi represents the decision of the majority vote of the observations falling in 
Ve,. With this modification, the learning for ()j becomes 

()i(n + 1) = ()i(n) + an ,(dxn ,gi(8n ; N),xn ,8n ) \70,(n)(()i(n) - xn). (21) 

This equation has the same form as (3) with the function H(8, z) defined from (21) 
replacing H(8, z). 

This divergence happens because the decisions of the Voronoi vectors do not agree 
with the majority vote of the observations closest to each vector. As a result, the 
Voronoi vectors are pushed away from the origin. This phenomena occurs even 
though the observation data is bounded. The point here is that, if the decision 
associated with a Voronoi vector does not agree with the majority vote of the 
observations closest to that vector then it is possible for the vector to diverge. A 
simple solution to this problem is to correct the decisions of all the Voronoi vectors 
a.fter every adjustment so that their decisions correspond to the majority vote. In 
practice this correction would only be done during the beginning iterations of the 
learning algorithm since that is when an is large and the Voronoi vectors are moving 
around significantly. "Vith this modification it is possible to show convergence to the 
Bayes optimal classifier (La Vigna [1989]) as the number of Voronoi vectors become 
large. 

5 Decision Error 

In this section we discuss the error associated with the modified LVQ algorithm. 
Here two results are discussed. The first is the simple comparison between LVQ 
and the nearest neighbor algorithm. The second result is if the number of Voronoi 
vectors is allowed to go to infinity at an appropriate rate as the number of obser­
vations goes to infinity, then it is possible to construct a convergent estimator of 
the Bayes risk. That is, the error associated with LVQ can be made to approach 
the optimal error. As before, we concentrate on the binary pa.ttern case for ease of 
notation. 

5.1 Nearest Neighbor 

If a Voronoi vector is assigned to each observation then the LVQ algorithm reduces 
to the nearest neighbor algorithm. For that algorithm, it was shown (Cover & Hart 
[1967]) that its Bayes minimum probability of error is less than twice that of the 
optimal classifier. More specifically, let r* be the Bayes optimal risk and let l' be 
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the nearest neighbor risk. It was shown that 

r*::; r::; 2r*(1- r*) < 2r*. (22) 

Hence in the case of no iteration, the Bayes' risk associated with LVQ is given from 
the nearest neighbor algorithm. 

5.2 Other Choices for Number of Voronoi Vectors 

We saw above that if the number of Voronoi vectors equals the number of observa­
tions then LVQ coincides with the nearest neighbor algorithm. Let kN represent the 
number of Voronoi vectors for an observation sample size of N. We are interested 
in determining the probability of error for LVQ when kN satisfies (1) limkN = 00 

and (2) lim(kN / N) = O. In this case, there are more observations than vectors and 
hence the Voronoi vectors represent averages of the observations. It is possible to 
show that with kN satisfying (1)-(2) the decision error associated with modified 
LVQ can be made to approach the Bayesian optimal decision error as N becomes 
large (LaVigna [1989]). 

6 Conclusions 

We have shown convergence of the Voronoi vectors in the LVQ algorithm. We have 
also presented the majority vote modification of the LVQ algorithm. This modifi­
cation prevents divergence of the Voronoi vectors and results in convergence for a 
larger set of initial conditions. In addition, with this modification it is possible to 
show that as the appropriate parameters go to infinity the decision regions asso­
ciated with the modified LVQ algorithm approach the Bayesian optimal (La Vigna 
[1989]). 
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