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Abstract 

In this paper we show that discrete affine wavelet transforms can provide 
a tool for the analysis and synthesis of standard feedforward neural net­
works. It is shown that wavelet frames for L2(IR) can be constructed based 
upon sigmoids. The spatia-spectral localization property of wavelets can 
be exploited in defining the topology and determining the weights of a 
feedforward network. Training a network constructed using the synthe­
sis procedure described here involves minimization of a convex cost func­
tional and therefore avoids pitfalls inherent in standard backpropagation 
algorithms. Extension of these methods to L2(IRN) is also discussed. 

1 INTRODUCTION 

Feedforward type neural network models constructed from empirical data have been 
found to display significant predictive power [6]. Mathematical justification in sup­
port of such predictive power may be drawn from various density and approximation 
theorems [1, 2, 5]. Typically this latter work doesn't take into account the spec­
tral features apparent in the data. In the present paper, we note that the discrete 
affine wavelet transform provides a natural framework for the analysis and synthe­
sis of feedforward networks. This new tool takes account of spatial and spectral 
localization properties present in the data. 

Throughout most of this paper we restrict discussion to networks designed to ap­
proximate mappings in L2(IR). Extensions to L2(IRN) are briefly discussed in 
Section 4 and will be further developed in [10]. 
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2 WAVELETS AND FRAMES 

Consider a function f of one real variable as a static feedforward input-output map 

y= f(x) 

For simplicity assume f E L2(IR) the space of square integrable functions on the real 
line. Suppose a sequence {fn} C L2(IR) is given such that, for suitable constants 
A> 0, B < 00, 

(1) 
n 

for all f E L2(JR) . Such a sequence is said to be a frame. In particular orthonormal 
bases are frames. The above definition (1) also applies in the general Hilbert space 
setting with the appropriate inner product. Let T denote the bounded operator 
from L2(IR) to f2(Z), the space of square summable sequences, defined by 

(Tf) = {< f, fn > }neZ' 

In terms of the frame operator T, it is possible to give series expansions, 

f = L Tn < f, fn > 
n 

Lfn < f,fn >, (2) 
n 

where {Tn = (T-T)-l fn} is the dual frame. 

A particular class of frames leads to affine wavelet expansions. Consider a family 
of functions {tPmn} of the form, 

(3) 

where, the function 1j; satisfies appropriate admissibility conditions [3, 4] (e.g. J tP = 
0). Then for suitable choices of a > 1, b > 0, the family { tPmn} is a frame for L2 (IR) . 
Hence there exists a convergent series representation, 

m n 

(4) 
m n 

The frame condition (1) guarantees that the operator (T-T) is boundedly invertible. 
Also since III - (2(A + B)-lT-T)1I < 1, (T-T)-l is given by a Neumann series [3]. 
Hence, given f, the expansion coefficients emn can be computed. 

The representation (4) of f above as a series in dilations and translations of a single 
function 1j; is called a wavelet expansion and the function tP is known as the analyzing 
or mother wavelet for the expansion. 
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3 FEEDFORWARD NETWORKS AND WAVELET 
EXPANSIONS 

Consider the input-output relationship of a feedforward network with one input, 
one output, and a single hidden layer, 

(5) 
n 

where an are the weights from the the input node to the hidden layer, bn are the 
biases on the hidden layer nodes, en are the weights from the hidden layer to the 
output layer and g defines the activation function of the hidden layer nodes. It is 
clear from (5) that the output of such a network is given in terms of dilations and 
translations of a single function g. 

3.1 WAVELET ANALYSIS OF FEEDFORWARD NETWORKS 

Let g be a 'sigmoidal' function e.g. g(x) = l+!-z and let "p be defined as 

"p(x) = g(x + 2) + g(x - 2) - 2g(x). (6) 

Then it is possible (see [9] for details) to determine a translation stepsize band 
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Figure 1: Mother Wavelet "p (Left) And Magnitude Of Fourier Transform 1~12 

a dilation stepsize a for which the family of functions "pmn as defined by (3) is a 
frame for L2(IR). Note that wavelet frames for L2(JR) can be constructed based 
upon other combinations ofsigmoids (e.g "p(x) = g(x+p)+g(x-p)-2g(x), p> 0) 
and that we use the mother wavelet of (6) only to illustrate some properties which 
are common to many such combinations. 

It follows from the above discussion that a feedforward network having one hidden 
layer with sigmoidal activation functions can represent any function in L2(IR) . In 
such a network (6) says that the sigmoidal nodes should be grouped together in sets 
of three so as to form the mother wavelet "p. 
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3.2 WAVELETS AND SYNTHESIS OF FEEDFORWARD 
NETWORKS 

In defining the topology of a feedforward network we make use of the fact that the 
function "p is well concentrated in both spatial and spectral domains (see Figure 
1). Dilating"p corresponds to shifting the spectral concentration and translating "p 
corresponds to shifting the spatial concentration. 

The synthesis procedure we describe here is based upon estimates of the spatial 
and spectral localization of the unknown mapping as determined from samples 
provided by the training data. Spatial locality of interest can easily be determined 
by examination of the training data or by introducing a priori assumptions as to the 
region over which it is desired to approximate the unknown mapping. Estimates of 
the appropriate spectral locality are also possible via preprocessing of the training 
data. 

Let Qmn and Qf respectively denote the spatia-spectral concentrations of the 
wavelet "pmn and of f. Thus Qmn and Qf are rectangular regions in the spatia­
spectral plane (see Figure 2) which contain 'most' of the energy in the functions 
"pmn and f. More precise definitions of these concentrations can be found in [9]. 
Assuming that Qf has been estimated from the training data. We choose only those 
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Figure 2: Spatio-Spectral Concentrations Qmn And Qf Of Wavelets "pmn And 
Unknown Map f. 

elements of the frame {.,pmn} which contribute 'significantly' to the region Qf by 
defining an index set L f ~ Z2 in the following manner, 

where, J.L is the Lesbegue measure on lR? Since f is concentrated in Qf, by choosing 
L f as above, a 'good' approximation of f can be obtained in terms of the finite set 

of frame elements with indices in T f. That is f can be approximated by 1 where, 

f = L cmn"pmn 
(m,n)eLJ 

(7) 
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for some coefficients {cmn } (m,n )eL J • 

Having determined L f, a network is constructed to implement the appropriate 
wavelets tPmn. This is easily accomplished by choosing the number of sigmoidal 
hidden layer nodes to be M = 3 x ~L J and then grouping them together in sets of 
three to implement tP as in (6). Weights from the input to the hidden layer are set 
to provide the required dilations of tP and biases on the hidden layer nodes are set 
to provide the required translations. 

3.2.1 Computation of Coefficients 

By the above construction, all weights in the network have been fixed except for the 
weights from the hidden layer to the output which specify the coefficients Cmn in 
(7). These coefficients can be computed using a simple gradient descent algorithm 
on the standard cost function of backpropagation. Since the cost function is convex 
in the remaining weights, only globally minimizing solutions exist. 

3.2.2 Simulations 

Figure 3 shows the results of a simple simulation example. The solid line in Figure 
3 indicates the original mapping f which was defined via the inverse Fourier trans­
form of a randomly generated approximately bandlimited spectrum. Using a single 
dilation of tP which covered the frequency band sufficiently well and the required 
translations, the dashed curve shows the learned network approximation. 
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Figure 3: Simulation Using Network Synthesis Procedure. Solid Curve: Original 
Function, Dashed Curve: Network Reconstruction. 

4 DISCUSSION AND CONCLUSIONS 

It has been demonstrated here that affine wavelet expansions provide a framework 
within which feedforward networks designed to approximate mappings in L2(lR) can 
be understood. In the case when the mapping is known, the expansion coefficients, 
and therefore all weights in the network can be computed. Hence the wavelet 
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transform method (and in general any transform method) not only gives us rep­
resent ability of certain classes of mappings by feedforward networks, but also tells 
us what the representation should be. Herein lies an essential difference between 
the wavelet methods discussed here and arguments based upon density in function 
spaces. 

In addition to providing arguments in support of the approximating power of feed­
forward networks, the wavelet framework also suggests one method of choosing 
network topology (in this case the number of hidden layer nodes) and reducing 
the training problem to a convex optimization problem. The synthesis technique 
suggested is based upon spatial and spectral localization which is provided by the 
wavelet transform. 

Most useful applications of feedforward networks involve the approximation of map­
pings with higher dimensional domains e.g. mappings in L2(JRN). Discrete affine 
wavelet transforms can be applied in higher dimensions as well (see e.g. [7] and [8]). 
Wavelet transforms in L2(IRN) can also be defined with respect to mother wavelets 
constructed from sigmoids combined in a manner which doesn't deviate from stan­
dard feedforward network architectures [10]. Figure 4 shows a mother wavelet for 
L2(IR2) constructed from sigmoids. In higher dimensions it is possible to use more 
than one analyzing wavelet [7], each having certain orientation selectivity in addi­
tion to spatial and spectral localization. If orientation selectivity is not essential, 
an isotropic wavelet such as that in Figure 4 can be used. 

Figure 4: Two-Dimensional Isotropic Wavelet From Sigmoids 

The wavelet formulation of this paper can also be used to generate an orthonormal 
basis of compactly supported wavelets within a standard feedforward network ar­
chitecture. If the sigmoidal function 9 in Equation (6) is chosen as a discontinuous 
threshold function, the resulting wavelet 'IjJ is the Haar function which thereby re­
sults in the Haar transform. Dilations of the Haar function in powers of 2 (a = 2) 
together with integer translations (b = 1), generate an orthonormal basis for L2(IR) . 
Multidimensional Haar functions are defined similarly. The Haar transform is the 
earliest known example of a wavelet transform which however suffers due to the 
discontinuous nature of the mother wavelet. 
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