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Abstract 

\Ve show that a simple spin system bia.sed at its critical point can en­
code spatial characteristics of external signals, sHch as the dimensions of 
"objects" in the visual field. in the temporal correlation functions of indi­
vidual spins. Qualit.ative arguments suggest that regularly firing neurons 
should be described by a planar spin of unit lengt.h. and such XY models 
exhibit critical dynamics over a broad range of parameters. \Ve show how 
to extract these spins from spike trains and then mea'3ure t.he interaction 
Hamilt.onian using simulations of small dusters of cells. Static correla­
tions among spike trains obtained from simulations of large arrays of cells 
are in agreement with the predictions from these Hamiltonians, and dy­
namic correlat.ions display the predicted encoding of spatial information. 
\Ve suggest that this novel representation of object dinwnsions in temporal 
correlations may be relevant t.o recent experiment.s on oscillatory neural 
firing in the visual cortex. 

1 INTRODUCTION 

Physical systems at a critical point exhibit long-range correlations even though 
the interactions among the constituent partides are of short range . Through the 
fluct.uation-dissipation theorem this implies that the dynamics at one point in the 
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system are sensitive t.o external pert.urbat.ions which are applied very far away. If 
we build a.ll analog computer poised precisely at such a critical point it should be 
possible to evaluate highly non-local funct.ionals of the input signals using a locally 
interconnected architecture. Such a scheme would be very useful for visual compu­
tations, especially those which require comparisons of widely separated regions of 
the image. From a biological point of view long-range correlat.ions at a critical point 
might provide a robust scenario for "responses from beyond the classical receptive 
field" [1]. 

In this paper we present. an explicit model for analog computation at a critical 
point and show that this model has a remarkable consequence: Because of dynamic 
scaling, spatial properties of input. signals are mapped into temporal correlat.ions 
of the local dynamics. One can, for example, measure t.he size and t.opology of 
"object.s" in a scene llsing only the temporal correlations in t.he output of a single 
computational unit (neuron) locat.ed within the object. We then show that our 
abst.ract model can be realized in networks of semi-realistic spiking neurons. The 
key to this construction is that. neurons biased in a regime of regular or oscillatory 
firing can be mapped to XY or planar spins [2,3]' and two-dimensional arrays of 
these spins exhibit a broad range of parameters in which the system is generically 
at a critical point. Non-oscillatory neurons cannot, in general, be forced to operate 
at a critical point. without delicate fine tuning of the dynamics, fine tuning which 
is implausible both for biology and for man-made analog circuits. We suggest t.hat 
these arguments may be relevant to the recent observations of oscillatory firing in 
the visual cortex [4,5,6]. 

2 A STATISTICAL MECHANICS MODEL 

\Ve consider a simple two-dimensional array of spins whose stat.es are defined by unit 
two-vect.ors Sn. These spins interact. with their neighbors so that the total energy of 
the syst.em is H = -J L Sn ,Sm, with the sum restricted to nearest neighbor pairs . 
This is the XY model, which is interesting in part because it possesses not a critical 
point but rather a critical line [7] . At a given temperature, for all J > J c one finds 
that correlations among spins decay algebraically, (Sn ,Sm) ex l/lrn - rm 117 , so that 
there is no characteristic scale or correlation length; more precisely the correlation 
length is infinite. In contrast, for J < J c we have (Sn,Sm) ex exp[-Irn - rml/{], 
which defines a finite correlation length {. 

In the algebraic phase the dynamics of t.he spins on long length scales are rigorously 
described by the spin wave approximation, in which one assumes that fluctuations 
in the angle between neighboring spins are small. In this regime it. makes sense to 
use a continuum approximation rather than a lattice, and the energy of the system 
becomes H = J J ({l ,z'lv 4>(x)l2, where ¢(x) is the orientation of the spin at position 
x. The dynamics of the syst.em are determined by the Langevin equation 

iJ¢(x,t) ') ot = J'V-4>(x, t) + 1J(x, t), (1) 

where I] is a Gaussian t.hermal noise source with 

(1J(x, i)-I](x', t')} = 2kB TcS(x - x')cS(t - I'). (2) 
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\Ve can then show that the time correlation function of the spin at a single sit,(> x 
is given by 

(S(x. t)·S(x. 0)) = exp [-2knTJ ~~' J (J22~k)'? 1.)- e;~:t4l. 
'l.ir 7r - w- + -' (:3 ) 

In fact Eq. 3 is valid only for an infinite array of spins. Imagine that external signals 
to this array of spins can "activate" and "deactivate" t.he spins so that one must 
really solve Eq. 1 on finite rpgions or clusters of active spins. Then we can writ.e 
the analog of Eq. :3 as 

[ knT ~ , ? 1 J>.. I I 1 (S(x, t)·S(x. 0)) = exp -- L-1~'71(x)I--(1- e- n t) • 
J All 

7l 

(4) 

where 1/'71 and All are the eigenfunctions and associated eigenvalues of (- v<?) on 
the region of active spins. The key point here is that the spin auto-correlation 
function in time determines the spectrum of the Laplacian on the region of activity. 
But from the classic work of I\:ac [8] we know that this spectrum gives a great. 
deal of information about the size and shape of the active region - we can in 
general determine the area, the length of the perimeter, and the t.opology (number 
of holes) from the set of eigenvalues {An}. and this is t.rue regardless of the absolut.e 
dimensions of the region. Thus by operating at a critical point we can achieve 
a scale-independent encoding of object dimension and topology in the temporal 
correlations of a locally connected system. 

3 MAPPING REAL NEURONS ONTO THE 
STATISTICAL MODEL 

All current models of neuralnet",.'orks are based on the hope that most microscopic 
("biological") details are unimportant for the macroscopic, collective computational 
behavior of the system as a whole. Here we provide a rigorous connection between a 
more realistic neural model and a simplified model with spin variables and pffective 
interactions . essentially the XY model discussed above. A more det.ailed account is 
given in [2,3]. 

\Ve use the Fitzhugh-Nagumo (FN) model [9.10] to describe the electrical dynamics 
of an individual neuron. This model demonstrates a threshold for firing action 
potentials. a refractory Jwriod, ano single-shot as well as repetitive firing - in 
short , all tlw qualit.ative properties of neural firing. It is also known to provide a 
reasonable quant.it.at.ive df'scription of sewral cell types. To be realistic it is essential 
to add a noise current bln(t) which we take to be Gaussian, spectrally white. and 
independent. in each cell n . 

"Ve connect each neuron to its neighbors in regular one- and two-dimensional arrays. 
More general local connections are easily added and do not significantly change t.he 
results presented helow. We model a synapse between two neurons by exponenti­
ating the volta.ge from one anel injecting it as current into the other. Our choice is 
motivated by the fact that the number of t.ransmitter vesicles released at a synapse 
is exponential in the presynaptic voltage [11]; other synapt.ic transfer character­
istics. including sma.ll delays. give results qualitatively similar t.o those described 
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here. The resulting equations of motion are 

(l/Td [10 + 6In (t) - ~~l(\'~ -1) - lVn + L Jnm eXP{\/m(t)/\;o}] , 
111 

(5) 

where Vn is t.he transmembrane voltage in cell 11" 10 is the DC bias current, and t.he 
H'n are auxiliary variables; Vo sets the scale of voltage sensitivity in the synapse. 
Voltages and currents are dimensionless, and t.he parameters of the syst.em are 
expressed in terms of the time constants TI and T2 and a dimensionless rat.io Q. 

From t.he voltage traces we extract the spike arrival times in the nth neuron, {til. 
Wit.h the appropriate choice of parameters the FN model can be made to fire 
regularly-t.he interspike intervals are tightly clustered around a mean value. The 
power spectrum of t.he spike train s(t) Li b(t - ti) has well resolved peaks at ±wo, 
±2wo, .... \Ve then low-pass filter s(1) to keep only the ±wo peaks, obtaining a 
phase-modulated cosine, 

[Fs](t) ~ 1.410 cos[wot + ¢(t)], (6) 

where [Fs](t) denot.es the filtered spike train. By looking at [Fs](t) and its time 
derivative, we can extract the phase ¢(t) which describes the oscillat.ion that un­
derlies regular firing. Since the orientation of a planar spin is also described by a 
single phase variable, we can reduce the spike train to a time-dependent planar spin 
S(t). \Ve now want to see how these spins interact when we connect two cells via 
synapses. 

We characterize the two-neuron interaction by accumulating a histogram of the 
phase differences between two connected neurons. This probability distribution 
defines an effective Hamiltonian, P( ¢l, ¢2) ex: exp[-H( ¢I - ¢2)). \Vith excitatory 
synapses (J > 0) the interaction is ferromagnetic, as expected (sf'e Fig. 1). The 
Hamiltonian takes other interesting forms for inhibitory, delayed, and nonreciprocal 
synapses. By simulating small clusters of cells we find that interactions other than 
nearest neighbor are negligible. This leads us to predict that the entire network is 
desc.ribed by the effective Hamiltonian H = Lij Hij(¢i - ¢j), where Hij(¢i - <Pj) 
is the effective Hamiltonian measured for the pair of connected cells i, j. 

One crucial consequence of Eq. G is that correlations of the filtered spike trains 
are exactly proportional to the spin-spin correlations which are natura.l objects in 
statistical mechanics. Specifically, if we have two cells 11, and m, 

( 7) 

This relation shows us how the statistical description of the net.work can be tested 
in experiments which monitor actual neural spike trains. 

4 DOES THE MAPPING WORK? 

\Vhen planar spins are connected in a one-dimensional chain with nearest-neighbor 
interactions, correlations bet.ween spins drop off expollentially with distance. To test. 
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this prediction we have run simulations on chains of 32 Fitzhugh-Nagumo neurons 
connected to their nearest neighbors. Correlations computeJ directly from the 
filtered spike trains as indicated above indeed decay exponentially. as seen in the 
insert to Fig. 1. Fig. 1 shows that the predictions for the correlation length from 
the simple model are in excellent agreement with the correlation lengths observed 
in the simulations of spiking neurons; there are no free parameters. 
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Figure 1: Correlation length obtained from fits to the simulation dat.a vs. correlation 
length predicted from t.he Hamiltonians. Inset., upper left.: Correlation function vs. 
distance from simulat.ions, with exponential fit. Inset., lower right.: Corresponding 
Hamiltonian as a function of phase difference. 

In t.he t.wo-dimensional case we connect each neuron to its four nearest neighbors 
on a square lat.tice. The corresponding spin model is essentially the XY mode. 
Hence we expect. a low-temperature (high synaptic st.rengt.h) phase wit.h correla­
tions that decay slowly (as a small power of distance) and a high-t.emperature (low 
synaptic strength) disordered phase with exponential decay. These predictions were 
confirmed by large-scale simulations of two-dimensional arrays [2]. 

5 OBJECT DIMENSIONS FROM TEMPORAL 
CORRELATIONS 

We believe that we have presented convincing evidence for the description of regu­
la.rly firing neurons in t.erms of XY spins, at least as regards their static or equilib­
rium correlations. In our theoretical discussion we showed t.hat the temporal corre­
lation functions of XY spins in the algebraic phase contained informat.ion about the 
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Figure 2: A uto-correlation functions for the spike trains of single cells at the center 
of square arrays of different sizes. 

dimensions of "objects." Here we test this idea in a very simple numerical exper­
iment. Imagine that we have an a.rray of N x N connected cells which are excited 
by incoming signals so that. they are in the oscillatory regime. Obviously we can 
measure t.he size of this "object" by looking at the entire network, but. our theo­
retical results suggest that. one can sense these dimensions (N) using the temporal 
correlations in just. one cell, most simply the cell in the center of t.he array. 

In Fig. 2 we show the auto-correlation functions for the spike trains of the center 
cell in arrays of different dimensions. It is clear that changing the dimensions 
of the array of active cells has profound effect.s on these spa.t.iaJly local temporal 
correlations. Because of the fact that the model is on a critical line these correlat.ions 
cont.inue to change as the dimensions of the array increase, rather than saturating 
after some finite correlation length is reached. Qualitatively similar results are 
expected throughout the algebraic phase of the associated spin model. 

Recently it has been shown that when cells in t.he cat visual cortex are excit.ed by 
appropriat.e st.imuli t.hey enter a regime of regular firing. These firing st.atist.ics are 
somewha.t. more complex t.han simulated here because there are a variable number 
of spikes per cycle, but we have reproduced all of our major results in models which 
capture t.his feature of the real dat.a. We have seen that networks of regularly 
firing cells are capable of qualitatively different types of computation because these 
networks can be placed at a critical point without fine tuning of paramet.ers. Most 
dramatically dynamic scaling allows us to trade spatial and t.emporal features and 
thereby encode object dimension in temporal correlations of single cells, as in Fig. 
2. To see if such novel computations are indeed mediated by cortical oscillations 
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we suggest. the direct analog of our numerical experiment, in which the correlation 
functions of single cells would be monitored in response to stmct.ured stimuli (e.g., 
textures) wit.h different total spatial extent in the t.wo dimensions of the visual 
field . 'rVe predict that these correlation functions will show a clear dependence on 
the area of t.he visual field being excited, with some sensitivity to the shape and 
topology as well. Most importantly this dependence on "object" dimension will 
extend to very large objects because the network is at a critical point. In this sense 
the temporal correlations of single cells will encode any object dimension, rather 
than being detectors for objects of some critical size. 
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