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Abstract 
We have used a neural network to compute corrections for images written 
by electron beams to eliminate the proximity effects caused by electron 
scattering. Iterative methods are effective. but require prohibitively 
computation time. We have instead trained a neural network to perform 
equivalent corrections. resulting in a significant speed-up. We have 
examined hardware implementations using both analog and digital 
electronic networks. Both had an acceptably small error of 0.5% compared 
to the iterative results. Additionally. we verified that the neural network 
correctly generalized the solution of the problem to include patterns not 
contained in its training set. We have experimentally verified this approach 
on a Cambridge Instruments EBMF 10.5 exposure system. 

1 INTRODUCTION 
Scattering imposes limitations on the minImum feature sizes that can be reliably 
obtained with electron beam lithography. Linewidth corrections can be used to control 
the dimensions of isolated features (i.e. intraproximity. Sewell. 1978). but meet with 
little success when dealing with the same features in a practical context. where they are 
surrounded by other features (i.e. interproximity). Local corrections have been 
proposed using a self-consistent method of computation for the desired incident dose 
pattern (parikh. 1978). Such techniques require inversion of large matrices and 
prohibitive amounts of computation time. Lynch et al .• 1982. have proposed an 
analytical method for proximity corrections based on a solution of a set of approximate 
equations, resulting in a considerable improvement in speed. 

The method that we present here, using a neural network. combines the computational 
simplicity of the method of Lynch et al. with the accuracy of the self-consistent 
methods. The first step is to determine the scattered energy profile of the electron 
beam which depends on the substrate structure, beam size and electron energy. This is 

• Present address: Motorola Inc. Phoenix Corporate Research Laboratories, 2100 East Elliot Rd. Tempe, 
AZ 85284. 
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then used to compute spatial vanatlons in the dosage that result when a particular 
image is scattered. This can be used to iteratively compute a corrected image for the 
input pattern. The goal of the correction is to adjust the written image so that the 
incident pattern of dose after scattering approximates the desired one as closely as 
possible. We have used this iterative method on a test image to form a training set for 
a neural network. The architecture of this network: was chosen to incorporate the basic 
mathematical structure as the analytical method of Lynch et ai., but relies on an 
adaptive procedure to determine its characteristic parameters. 

2 CALCULATING PROXIMITY CORRECTED PATTERNS 
We determined the radial distribution of scattered dose from a single pixel by using a 
Monte-Carlo simulation for a variety of substrates and electron beam energies 
(Cummings, 1989). As an example problem, we looked at resist on a heavy metal 
substrate. (These are of interest in the fabrication of masks for x-ray lithography.) For 
a 20 KeV electron beam this distribution, or "proximity function," can be approximated 
by the analytical expression 

I [ e-(r/a'i 

fer) = 1t(I+v+~) 0.2 + 

where 

a. = 0.038 Jlm, 'Y = 0.045 Jlm, ~ = 0.36 Jlm, v = 3.49 and ~ = 6.42. 

The unscattered image is assumed to be composed of an array of pixels, Io(x,y). For a 
beam with a proximity function fer) like the one given above, the image after scattering 
will be 

00 00 

ls(x,y) = L L Io(x-m,y-n) f«m2+n2)'/.), 

which is the discrete convolution of the original image with the lineshape fer). The 
approach suggested by analogy with signal processing is to deconvolve the image by 
an inverse filtering operation. This method cannot be used, however, because it is 
impossible to generate negative amounts of electron exposure. Restricting the beam to 
positive exposures makes the problem inherently nonlinear, and we must rely instead 
on an iterative, rather than analytical, solution. 

Figure 1 shows the pattern that we used to generate a training set for the neural 
network. This pattern was chosen to include examples of the kinds of features that are 
difficult to resolve because of proximity effects. Minimum feature sizes in the pattern 
ore 0.25 Jlm and the overall image, using 0.125 Jlm pixels, is 180 pixels (22.5 J.lm) on a 
side, for a total of 32,400 pixels. The initial incident dose pattern for the iterative 
correction of this image started with a relative exposure value of 100% for exposed 
pixels and 0 for unexposed ones. The scattered intensity distribution was computed 
from this incident dose using the discrete two-dimensional convolution with the 
summation truncated to a finite range, roo For the example proximity function 95% of 
the scattered intensity is contained within a radius of 1.125 J.lm (9 pixels) and this 
value was used for roo The scattered intensity distribution was computed and compared 
with the desired pattern of 100% for exposed and 0 for unexposed pixels. The 
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difference between the resulting scattered and desired distributions is the error. This 
error was subtracted from the dose pattern to be used for the next iteration. However, 
since negative doses are not allowed, negative regions in the correction were truncated 
to zero. 
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Figure 1: Training pattern 
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Using this algorithm, a pixel that receives a dosage that is too small will have a 
negative error, and on the next iteration its intensity will be increased. Unexposed 
pixels (i.e. regions where resist is to be removed) will always have some dosage 
scattered into them from adjacent features, and will consequently always show a 
positive error. Because the written dose in these regions is always zero, rather than 
negative, it is impossible for the iterative solution to completely eliminate the error in 
the final scattered distribution. However, the nonlinear exposure properties of the resist 
will compensate for this. Moreover, since all exposed features receive a uniform dose 
after correction, it is possible to choose a resist with the optimal contrast properties for 
the pattern. 

Although this iterative method is effective, it is also time consuming. Each iteration on 
the test pattern required about 1 hour to run on a 386 based computer. Four iterations 
were required before the smallest features in the resist were properly resolved. Even 
the expected order of magnitude speed increase from a large mainframe computer is 
not sufficient to correct the image from a full sized chip consisting of several billion 
pixels. The purpose of the neural network is to do these same calculations, but in a 
much shorter time. 

3 NETWORK ARCHITECTURE AND TRAINING 
Figure 2 shows the relationship between the image being corrected and the neural 
network. The correction for one pixel takes into account the image surrounding it. 
Since the neighborhood must include all of the pixels that contribute appreciable 
scattered intensity to the central pixel being corrected, the size of the network was 
determined by the same maximum radius, ro = 1.125 Ilm, that characterized the 
scattering proximity function. The large number of inputs would be difficult to manage 
in an analog network if these inputs were general analog signals, but fortunately the 
input data are binary, and can be loaded into an analog network using digital shift 
registers. 
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Figure 3 shows a schematic diagram of the analog network. The binary signals from 
the shift registers representing a portion of the image were connected to the buffer 
amplifiers through 10 Kil resistors. Each was connected to only one summing node, 
corresponding to its radial distance from the center pixel. This stage converted the 19 x 
19 binary representation of the image into 10 analog voltages that represented the 
radial distribution of the surrounding intensity. The summing amplifier at the output 
was connected to these 10 nodes by variable resistors. This resulted in an output that 
was a weighted sum of the radial components. 
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Figure 2: Network configuration 
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Figure 3: Schematic diagram of the analog network 
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Functionally. this network does the operation 
9 

V O\1t = ~ wr<Io>r' 
r-=O 

where wr are the weight coefficients set by the adjustable resistors and <10> are the 
r 

average values of the pixel intensity at radius r. The form of this relationship is 
identical to the one proposed by Lynch et al. but uses an adaptive method. rather than 
an analytical one. to detennine the coefficients wr' 

The prototype analog hardware network was built on a wire wrap board using 
74HCl64 8 bit CMOS static shift registers and LM324 quad operational amplifiers for 
the active devices. The resistors in the first layer were 10 KO thin-film resistors in 
dual-in-line packages and had a tolerance of 1%. The ten adjustable resistors in the 
second layer of the network were 10 turn precision trimmers. Negative weights were 
made by inverting the sign of the voltage at the buffer amplifiers. For comparison. we 
also evaluated a digital hardware implementation of this network. It was implemented 
on a floating point array processor built by Eighteen Eight Laboratories using an 
AT &T DSP-32 chip operating at 8 MFLOPs peak rate. The mathematical operation 
perfonned by the network is equivalent to a two-dimensional convolution of the input 
image with an adaptively learned floating point kernel. 

The adjustable weight values for both networks were determined using the delta rule of 
Widrow and Hoff (1960). For each pixel in the trial pattern of Figure I there was a 
corresponding desired output computed by the iterative method. Each pixel in the test 
image. its surroundings and corresponding analog corrected value (computed by the 
iterative method) constituted a single learning trial. and the overall image contained 
32,400 of them. We found that the weight values stabilized after two passes through 
the test image. 

4 NEURAL NETWORK PERFORMANCE 
The accuracy of both the analog and digital networks. compared to the iterative 
solution. was comparable. Both showed an average error for the test image of 0.5%, 
and a maximum error of 9% on any particular pixel. The accuracy of the networks on 
images other than the one used to train them was comparable. averaging about 0.5% 
overall. 

Convolution with an adaptively-leamed kernel is itself a relatively efficient 
computational algorithm. The iterative method required 4 hours to compute the 
correction for the 32,400 pixel example. Equivalent results were obtained by 
convolution in about 6.5 minutes using the same computer. Examination of the 
assembled code for the software network showed that the correction for each pixel 
required the execution of about 30 times fewer instructions than for the iterative 
method. 

The analog hardware generated corrections for the same example in 13.5 seconds. 
Almost 95% of this time was used for input/output operations between the network and 
the computer. It was the time required for the I/O. rather than the speed of the circuit, 
that limited the dynamic perfonnance of this system. Clearly. with improved I/O 
hardware. the analog network could be made to compute these corrections much more 
quickly. 
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The same algorithm, running on the digital floating point array processor perfonned the 
correction for this example problem in 4.5 seconds. The factor of three improvement 
over the analog hardware was primarily a result of the decreased time needed for I/O 
in the DSP-based network. The digital network was not appreciably more accurate than 
the analog one, indicating that the overall accuracy of operation was determined 
primarily by the network architecture rather than by limitations in the implementation. 
These results are summarized in Table 1. 

Table 1: Comparison of computational speed for various methods. 

METHOD 
Iteration 
Software network 
Analog hardware network 
Digital hardware network 

5 EXPERIMENTAL VERIFICATION 

SPEED 
6 years /mm2 
100 days /mm2 
2 days /mm2 
18 hours /mm2 

Recently, we have evaluated this method experimentally using a Cam bridge 
Instruments EB:r..1F 10.5 exposure system (Cummings, et al., 1990). The test image 
was 1 mm2 and contained 11,165 Cambridge shapes and 6.7x107 pixels. The substrate 
was silicon with 0.5 Jlm of SAL601-ER7 resist exposed at 20 KeV beam energy. The 
range of the scattered electrons is more than three times greater for these conditions 
than in the tests described above, requiring a network about ten times larger. The 
neural network computations were done using the digital floating point array processor, 
and required about 18 hours to correct the entire image. Input to the program was 
Cambridge source code, which was converted to a bit-mapped array, corrected by the 
neural network and then decomposed into new Cambridge source code. 

Figure 4 shows SEM micrographs comparing one of the test structures written with 
and without the neural network correction. This test structure consists of a 10 Jlm 
square pad next to a 1 Jlm wide line, separated by a gap of 0.5 Jlm. Note in the 
uncorrected pattern that the line widens in the region adjacent to the large pad, and the 
webs of resist extending into the gap. This is caused by excess dosage scattered into 
these regions from the large pad. In the corrected pattern, the dosage in these regions 
has been adjusted, resulting in a uniform exposure after scattering and greatly 
improved pattern resolution. 

6 CONCLUSIONS 
The results of our trial experiments clearly demonstrate the computational benefits of a 
neural network for this particular application. The trained analog hardware network 
performed the corrections more than 1000 times faster than the iterative method using 
the same computer, and the digital processor was 3000 times faster. This technique is 
readily applicable to a variety of direct write exposure systems that have the capability 
to write with variable exposure times. Implementation of the network on more 
sophisticated computers with readily available coprocessors can directly lead to another 
order of magnitude improvement in speed, making it practical to correct full chip-sized 
images. 
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The performance of the analog network suggests that with improved speed of I/O 
between the computer and the network, it would be possible to obtain much faster 
operation. The added flexibility and generality of the digital approach, however, is a 
considerable advantage. 
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Figure 4: Comparison of a test structure written with and without correction 
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